我有点困惑这段代码是如何工作的:

fig, axes = plt.subplots(nrows=2, ncols=2)
plt.show()

在这种情况下,无花果轴是如何工作的?它能做什么?

还有,为什么这不能做同样的事情:

fig = plt.figure()
axes = fig.subplots(nrows=2, ncols=2)

当前回答

如果你真的想使用循环,请执行以下操作:

def plot(data):
    fig = plt.figure(figsize=(100, 100))
    for idx, k in enumerate(data.keys(), 1):
        x, y = data[k].keys(), data[k].values
        plt.subplot(63, 10, idx)
        plt.bar(x, y)  
    plt.show()

其他回答

import matplotlib.pyplot as plt

fig, ax = plt.subplots(2, 2)

ax[0, 0].plot(range(10), 'r') #row=0, col=0
ax[1, 0].plot(range(10), 'b') #row=1, col=0
ax[0, 1].plot(range(10), 'g') #row=0, col=1
ax[1, 1].plot(range(10), 'k') #row=1, col=1
plt.show()

另一个简洁的解决方案是:

// set up structure of plots
f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,10))

// for plot 1
ax1.set_title('Title A')
ax1.plot(x, y)

// for plot 2
ax2.set_title('Title B')
ax2.plot(x, y)

// for plot 3
ax3.set_title('Title C')
ax3.plot(x,y)

还可以在subplots调用中解包坐标轴 并设置是否要在子图之间共享x轴和y轴

是这样的:

import matplotlib.pyplot as plt
# fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
ax1, ax2, ax3, ax4 = axes.flatten()

ax1.plot(range(10), 'r')
ax2.plot(range(10), 'b')
ax3.plot(range(10), 'g')
ax4.plot(range(10), 'k')
plt.show()

这里有一个简单的解决办法

fig, ax = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False)
for sp in fig.axes:
    sp.plot(range(10))

有几种方法可以做到这一点。subplots方法创建图形和子图,然后存储在ax数组中。例如:

import matplotlib.pyplot as plt

x = range(10)
y = range(10)

fig, ax = plt.subplots(nrows=2, ncols=2)

for row in ax:
    for col in row:
        col.plot(x, y)

plt.show()

然而,像这样的东西也可以工作,虽然它不是那么“干净”,因为你创建了一个带有子图的图形,然后在它们上面添加:

fig = plt.figure()

plt.subplot(2, 2, 1)
plt.plot(x, y)

plt.subplot(2, 2, 2)
plt.plot(x, y)

plt.subplot(2, 2, 3)
plt.plot(x, y)

plt.subplot(2, 2, 4)
plt.plot(x, y)

plt.show()