是否有理由更喜欢使用map()而不是列表理解,反之亦然?它们中的任何一个通常比另一个更有效或被认为更python化吗?
当前回答
我运行了一个快速测试,比较了调用对象方法的三种方法。在这种情况下,时间差可以忽略不计,这是函数的问题(参见@Alex Martelli的回复)。在这里,我研究了以下方法:
# map_lambda
list(map(lambda x: x.add(), vals))
# map_operator
from operator import methodcaller
list(map(methodcaller("add"), vals))
# map_comprehension
[x.add() for x in vals]
我查看了整数(Python int)和浮点数(Python float)的列表(存储在变量vals中),以增加列表的大小。考虑以下虚拟类DummyNum:
class DummyNum(object):
"""Dummy class"""
__slots__ = 'n',
def __init__(self, n):
self.n = n
def add(self):
self.n += 5
具体来说,就是add方法。__slots__属性是Python中的一个简单优化,用于定义类(属性)所需的总内存,减少内存大小。 这里是结果图。
如前所述,所使用的技术只会产生最小的差异,您应该以对您来说最易读的方式进行编码,或者在特定的情况下进行编码。在这种情况下,列表理解(map_comprehension技术)对于对象中的两种类型的添加是最快的,特别是对于较短的列表。
访问这个粘贴文件以获取用于生成图表和数据的源。
其他回答
Python 2:你应该使用map和filter而不是列表推导式。
一个客观的原因是,即使它们不是“Pythonic”,你也应该喜欢它们: 它们需要函数/lambdas作为参数,这引入了一个新的作用域。
我不止一次被这个问题困扰过:
for x, y in somePoints:
# (several lines of code here)
squared = [x ** 2 for x in numbers]
# Oops, x was silently overwritten!
但如果我说:
for x, y in somePoints:
# (several lines of code here)
squared = map(lambda x: x ** 2, numbers)
那一切都会好起来的。
你可以说我在相同的作用域中使用相同的变量名是愚蠢的。
我不是。代码本来是好的——两个x不在同一个作用域内。 直到我将内部块移动到代码的不同部分后,问题才出现(即:问题发生在维护期间,而不是开发期间),而且我没有预料到。
是的,如果你从来没有犯过这个错误,那么列表推导式会更优雅。 但从个人经验(以及看到其他人犯同样的错误)来看,我已经见过很多次这样的情况,所以我认为当这些错误渗透到代码中时,不值得你经历这种痛苦。
结论:
使用映射和过滤器。它们可以防止微妙的、难以诊断的范围相关错误。
注:
不要忘记考虑使用imap和filter(在itertools中),如果它们适合你的情况!
我发现列表推导式通常比映射式更能表达我想要做的事情——它们都能完成,但前者节省了试图理解复杂lambda表达式的精神负担。
在某个地方也有一个采访(我不能马上找到),Guido列出lambdas和函数函数是他最后悔接受Python的东西,所以你可以认为它们是非Python的。
我认为最python化的方法是使用列表理解而不是map和filter。原因是列表推导式比map和filter更清晰。
In [1]: odd_cubes = [x ** 3 for x in range(10) if x % 2 == 1] # using a list comprehension
In [2]: odd_cubes_alt = list(map(lambda x: x ** 3, filter(lambda x: x % 2 == 1, range(10)))) # using map and filter
In [3]: odd_cubes == odd_cubes_alt
Out[3]: True
正如你所看到的,一个理解不需要额外的lambda表达式映射需要。此外,一个理解也允许过滤容易,而映射需要过滤器允许过滤。
性能测量
图片来源:Experfy
你可以自己看看在列表理解和映射函数之间哪个更好。
(与map函数相比,列表理解处理100万条记录所需的时间更少。)
我的用例:
def sum_items(*args):
return sum(args)
list_a = [1, 2, 3]
list_b = [1, 2, 3]
list_of_sums = list(map(sum_items,
list_a, list_b))
>>> [3, 6, 9]
comprehension = [sum(items) for items in iter(zip(list_a, list_b))]
我发现自己开始使用更多的map,我认为map可能比comp慢,因为传递和返回参数,这就是我找到这篇文章的原因。
我相信使用map可以更有可读性和灵活性,特别是当我需要构造列表的值时。
如果你用地图的话,你读的时候就明白了。
def pair_list_items(*args):
return args
packed_list = list(map(pair_list_items,
lista, *listb, listc.....listn))
再加上灵活性奖励。 谢谢你其他的答案,再加上绩效奖金。
推荐文章
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件