这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)

其他回答

在对数据进行分类时,绩效大幅提高的原因是,如神秘论的回答所很好地解释的那样,分支预测罚款已经取消。

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

如果... 其它... 分支是指在满足条件时添加某种内容。 这种分支可以很容易地转换成有条件的移动说明, 并汇编成有条件的移动指示: cmovl, 在 x86 系统中。 分支和可能的分支预测处罚将被删除 。

因此,在C中,C++C中,将直接(不作任何优化)汇编成x86中有条件移动指令的语句是永久操作员.? :.。 因此,我们将上述语句改写为同等语句:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在英特尔核心i7-2600K @3.4 GHz和视觉工作室2010释放模式上,基准是:

x86x86

Scenario Time (seconds)
Branching - Random data 8.885
Branching - Sorted data 1.528
Branchless - Random data 3.716
Branchless - Sorted data 3.71

x64 x64

Scenario Time (seconds)
Branching - Random data 11.302
Branching - Sorted data 1.830
Branchless - Random data 2.736
Branchless - Sorted data 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们通过调查它们生成的 x86 组装来更仔细地看一看。 为了简单起见, 我们使用两个函数 最大 1 和 最大 2 。

最大 1 使用有条件分支, 如果... 其他... :

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

最大值2 使用永久操作员... ... ?

int max2(int a, int b) {
    return a > b ? a : b;
}

在一台X86-64型机器上,海合会-S生成以下组装。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

最大值2 使用代码要少得多, 原因是使用指令 cmovge 。 但真正的收益是 最大值2 不涉及分支跳跃, jmp , 如果预测结果不对, 则会有很大的性能处罚 。

那么,为什么有条件的行动效果更好呢?

在典型的 x86 处理器中,执行指令分为几个阶段。 大致上, 我们有不同的硬件可以处理不同阶段。 因此, 我们不必等待一个指令才能开始一个新的指令。 这被称为管道 。

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件移动的情况下,有条件移动指令的执行分为几个阶段,但前几个阶段,如Fetch和Decode,并不取决于前一个指令的结果;只有后几个阶段需要结果。因此,我们等待一个指令的执行时间的一小部分。这就是为什么有条件移动版本在预测容易时比分支慢的原因。

《计算机系统:程序员的观点》一书第二版对此作了详细解释。您可以查看3.6.6节的有条件移动指示,整个第四章的处理结构,以及5.11.2节的预测和错误处罚处的特殊待遇。

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。

分流收益!

重要的是要理解分支错误控制不会减慢程序。 错误预测的成本就好像不存在分支预测,而你等待着对表达方式的评价来决定运行的代码(下段有进一步的解释 ) 。

if (expression)
{
    // Run 1
} else {
    // Run 2
}

当出现 if-else \ 切换语句时, 表达式必须被评估以确定要执行哪个区块。 在编译者生成的组装代码中, 插入有条件的分支指令 。

分支指令可导致计算机开始执行不同的指令序列,从而偏离其默认的按顺序执行指令的行为(即如果表达式是虚假的,程序会跳过区块的代码),这取决于某些条件,即我们情况下的表达式评价。

尽管如此, 编译者试图预测结果, 然后再对结果进行实际评估。 它会从区块中获取指示, 如果表达方式是真实的, 那么就太好了! 我们得到了时间来评估它, 并在代码中取得了进步; 如果不是那样, 我们运行错误的代码, 管道就会被冲洗, 正确的区块会运行 。

可视化:

假设你需要选择路线1或路线2, 等待你的伴侣检查地图, 你已经停留在 ##,等待, 或者你可以选择路线1, 如果你运气好(路线1是正确的路线), 那么伟大的你不必等待你的伴侣检查地图(你省下时间让他检查地图), 否则你就会转回去。

尽管冲水管道的速度超快,但如今赌博是值得的。 预测分类数据或缓慢变化的数据总是比预测快速变化容易,也好于预测快速变化。

 O      Route 1  /-------------------------------
/|\             /
 |  ---------##/
/ \            \
                \
        Route 2  \--------------------------------

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

它是一个小桌子, 很可能被隐藏在处理器中, 而你运行的东西在一个非常紧凑的循环中, 和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中得到了优化:处理器预测,它需要在操作实际击中缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(换句话说:不完成分支预测是坏的,在分支预测失败之后的记忆负荷实在太可怕了!)

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是小什么是小什么?虽然小一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您的查看表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是将 & 0x[ something] FFF 添加到您的外观功能上,使边界检查可以预测 -- -- 并观看其更快进行。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

毫无疑问,我们中有些人会感兴趣的是如何识别对CPU的分支定位器有问题的代码。 Valgrind 工具缓冲grinnd 拥有一个通过使用 -- branch- sim=yes 的旗子启用的分支源代码模拟器。 运行此问题的示例时, 外环数减少到10000, 并用 g++ 编译, 给出了这些结果 :

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

钻入由 cg_ anoteate 产生的逐行输出,

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样您就可以很容易地识别问题行 - 在未排序版本中, 如果( data[c] 128) 线导致164 050 007 错误预测的有条件分支( Bcm) , 在缓存grind 的分支- 指示模型下, 而分类版本中它只造成 10 006 。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

详情请见性能辅导课程。

正如其他人已经提到的那样,神秘背后的是部门预测员。

我不是要补充一些东西,而是要用另一种方式解释这个概念。维基文字有一个简明的介绍,里面有文字和图表。我确实喜欢下面的解释,下面用一个图表来用直觉来描述处的预言。

在计算机结构中,分支预测器是一种数字电路,它试图猜测分支(如如果是当时的else结构)将以何种方式进行,然后才能确定这一点。分支预测器的目的是改善教学管道的流量。分支预测器在很多现代管道式微处理器结构(如x86)中实现高有效性能方面发挥着关键作用。双向分支通常是通过有条件的跳跃指令来实施。有条件跳跃可以是“不采取”的,也可以是有条件跳跃后立即实施的代码的第一个分支,或者可以是“获取”的,然后跳到存储第二分支的程序内存中的不同位置。在计算条件和有条件跳动通过指令管道的执行阶段之前,无法确定是否进行有条件跳动(见图1)。

根据所述情况,我写了动画演示,以显示在不同情况下如何在管道中执行指示。

没有部门预言家。

没有分支预测,处理器必须等到有条件跳跃指令通过执行阶段后,下一个指令才能进入管道的接货阶段。

该示例包含三个指令, 第一个是有条件跳跃指令。 后两个指令可以进入管道, 直到有条件跳跃指令执行为止 。

完成3项指示需要9小时周期。

使用预测器,不要采取有条件的跳跃。让我们假设预测不会采取有条件的跳跃。

完成3项指示需要7小时周期。

我们假设预测不会采取有条件的跳跃

完成3项指示需要9小时周期。

在分支误用的情况下,浪费的时间相当于从取货阶段到执行阶段的输油管阶段的数量。 现代微处理器往往有相当长的输油管,因此误用延迟时间在10到20小时之间。 结果,输油管更长时间增加了对更先进的分支预测器的需求。

如你所见,我们似乎没有理由不使用 部门预言家。

这是一个很简单的演示, 澄清了分支预测器的基本部分。 如果这些 gifs 令人烦恼, 请随意将其从答案中删除, 访问者也可以从 PredictorDemo 获得现场演示源代码 。