这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)

其他回答

C++ 中经常使用的布尔操作在编译的程序中产生许多分支。 如果这些分支是内部循环, 且难以预测, 则它们可以大大减缓执行速度。 布尔变量以8位数整数存储, 值为 0, 值为假值, 值为 1 值为真值 。

布尔变量被超额确定,因为所有以布尔变量作为输入变量的操作员都检查输入值是否有比 0 或 1 的其他值,但以布尔值作为输出的操作员不能产生比 0 或 1. 的其他值。 这样,以布尔变量作为输入的操作效率就比必要低。 请举例说明 :

bool a, b, c, d;
c = a && b;
d = a || b;

这通常由汇编者以下列方式加以实施:

bool a, b, c, d;
if (a != 0) {
    if (b != 0) {
        c = 1;
    }
    else {
        goto CFALSE;
    }
}
else {
    CFALSE:
    c = 0;
}
if (a == 0) {
    if (b == 0) {
        d = 0;
    }
    else {
        goto DTRUE;
    }
}
else {
    DTRUE:
    d = 1;
}

此代码远非最佳 。 如果出现错误, 分支可能要花很长的时间。 如果可以肯定地知道, 布林操作没有比 0 和 1 的其他值, 则可以使布林操作效率更高。 原因是, 编译者没有做出这样的假设, 如果变量未初始化或者来自未知来源, 则这些变量可能有其他值。 如果 a 和 b 被初始化为有效值, 或者如果它们来自产生布林输出的操作员, 则上述代码可以优化。 最优化的代码看起来是这样 :

char a = 0, b = 1, c, d;
c = a & b;
d = a | b;

使用字符代替布尔, 以便使用比位操作员( & 和 & ) 而不是布尔操作员( 和 ) 。 比位操作员是单项指令, 只需要一个时钟周期 。 OR 操作员( 和 ) 工作, 即使 a 和 b 的值比 0 或 1. 操作员( ) 和 Exclusive 或 操作员( ) 可能会产生不一致的结果, 如果操作员的值比 0 和 1 不同 , 操作员( ) 和 Exclusive 或操作员( ) 可能会产生不一致的结果 。

~ 无法用于非。 相反, 您可以在变量上做一个布尔, 变量为 0 或 1 , 使用 XOR, 使用 1 :

bool a, b;
b = !a;

可优化到 :

char a = 0, b;
b = a ^ 1;

a \\ b 无法被 & b 替换为 & b 表达式, 如果 b 是假的表达式, 则该表达式不应被评估( \ \ 将不评估 b, & will) 。 同样, a \ b 也不能被 \ b 替换为 \ b , 如果 b 是真实的, 则该表达式不应被评估 。

如果操作符是变量, 则使用比位运算符更有利 :

bool a; double x, y, z;
a = x > y && z < 5.0;

在大多数情况下是最佳的(除非您预期 表达式会产生很多分支错误)。

在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:

if (likely( everything_is_ok ))
{
    /* Do something */
}

或类似:

if (unlikely(very_improbable_condition))
{
    /* Do something */    
}

可能性 () 和 可能性 () 实际上都是宏, 其定义是使用海合会的 ` 内建_ 期望 ' 来帮助编译者插入预测代码, 以考虑到用户提供的信息, 从而有利于该条件。 海合会支持其他能够改变运行程序的行为或发布低级别指令, 如清除缓存等 。 请参见此文档, 内容可以通过海合会的现有内建 。

通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

它是一个小桌子, 很可能被隐藏在处理器中, 而你运行的东西在一个非常紧凑的循环中, 和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中得到了优化:处理器预测,它需要在操作实际击中缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(换句话说:不完成分支预测是坏的,在分支预测失败之后的记忆负荷实在太可怕了!)

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是小什么是小什么?虽然小一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您的查看表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是将 & 0x[ something] FFF 添加到您的外观功能上,使边界检查可以预测 -- -- 并观看其更快进行。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

除了树枝预测可能会减慢你的速度之外 分解阵列还有另一个优势

您可以有一个停止状态, 而不是仅仅检查值, 这样您只能环绕相关数据, 忽略其它数据 。 分支预测只差一次 。

 // sort backwards (higher values first), may be in some other part of the code
 std::sort(data, data + arraySize, std::greater<int>());

 for (unsigned c = 0; c < arraySize; ++c) {
       if (data[c] < 128) {
              break;
       }
       sum += data[c];               
 }

Bjarne Stroustrup对此问题的答复:

这听起来像面试问题。是真的吗?你怎么知道?回答效率问题而不首先做一些测量是不明智的,所以知道如何衡量是很重要的。

于是,我用百万整数的矢量尝试过,然后得到:

Already sorted    32995 milliseconds
Shuffled          125944 milliseconds

Already sorted    18610 milliseconds
Shuffled          133304 milliseconds

Already sorted    17942 milliseconds
Shuffled          107858 milliseconds

我跑了好几次才确定。 是的,这个现象是真实的。我的关键代码是:

void run(vector<int>& v, const string& label)
{
    auto t0 = system_clock::now();
    sort(v.begin(), v.end());
    auto t1 = system_clock::now();
    cout << label
         << duration_cast<microseconds>(t1 — t0).count()
         << " milliseconds\n";
}

void tst()
{
    vector<int> v(1'000'000);
    iota(v.begin(), v.end(), 0);
    run(v, "already sorted ");
    std::shuffle(v.begin(), v.end(), std::mt19937{ std::random_device{}() });
    run(v, "shuffled    ");
}

至少这个编译器、 标准库和优化设置是真实存在的。 不同的执行可以而且确实提供了不同的答案。 事实上,有人做了更系统的研究( 快速的网络搜索会找到它) , 而大多数执行都显示了这种效果。

原因之一是分支预测:类式算法中的关键操作是“if(v)(i) < pivot] ” 或等效。对于一个分类序列,测试总是真实的,而对于随机序列,选择的分支则随机变化。

另一个原因是,当矢量已经分类后,我们从不需要将元素移到正确位置。这些小细节的影响是我们看到的5或6个系数。

Quicksort(以及一般分类)是一项复杂的研究,吸引了计算机科学中最伟大的一些思想。 一种良好的功能是选择良好的算法和关注硬件的运行效果的结果。

如果您想要写入高效代码, 您需要了解一些关于机器结构的知识 。