这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)

其他回答

以上行为之所以发生 是因为分局的预测

要了解分支预测,首先必须了解指示管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤顺序重叠,这样可以同时同时执行不同的步骤。 这个技术被称为指令管线, 用来增加现代处理器的输送量。 要更好地了解这一点, 请在维基百科上看到这个例子 。

一般来说,现代处理器有相当长(和宽)的管道,因此许多指令都可以在飞行中。 见现代微处理器 A 90-Minute 指南!该指南首先引入基本的自序管线,然后从那里开始。

但为了方便起见,让我们考虑一个简单的单行输油管,只有这4个步骤。 (像典型的5级RISC一样,但省略了单独的 MEM 阶段。 )

IF -- -- 从内存 ID 获取指令 -- -- 解码指令 EX -- -- 执行指令 WB -- 写回到 CPU 注册簿

一般为2项指示提供4级输油管。

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指示B或指示C,处理器必须等待(暂停)直到指示A离开管道中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处获取)。

没有预测:如果情况属实:

不预言:如果情况不实:

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的:

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。当分支错误时浪费的时间相当于从获取阶段到执行阶段的管道阶段的数量。现代微处理器往往有相当长的管道,因此错误预防的延迟时间在10到20小时的周期之间。管道越长,对良好的分支预测器的需求就越大。

在OP的代码中,当有条件的分支预测器第一次没有任何信息可以作为预测的基础,因此第一次它会随机选择下一个指令。 (或者返回静态预测,通常不前进,后退)。在循环中,它可以在历史的基础上进行预测。对于按升序排序的阵列,有三种可能性:

所有要件均大于128 有些开始的新要件小于128,稍晚则大于128

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

现代微处理器 A 90- Minute 指南! Dan Luuu 的关于分支预测的文章( 包括较老的分支预测器, 不是现代IT- TAGE 或 Perceptron) https:// en. wikipedia.org/ wiki/ Branch_ predictor 分支预测和解释器的性能 https:// en. wikipedia. org/ wiki/ Branch_ predictor 分支预测器 - 不要信任 Followlore - 2015 显示 Intel's Haswell 在预测 Python 翻译主循环的间接分支( 由不简单模式造成历史问题) , 与没有使用 IT- TAGE 的早期 CPUs 相比, 早期的CPUs presenterv( 类似循环) 没有帮助完全使用这个完全随机的 。 当源代码时, 最不可能的C- train lishing lishal listal lives liver 已经使用了, liver 。

毫无疑问,我们中有些人会感兴趣的是如何识别对CPU的分支定位器有问题的代码。 Valgrind 工具缓冲grinnd 拥有一个通过使用 -- branch- sim=yes 的旗子启用的分支源代码模拟器。 运行此问题的示例时, 外环数减少到10000, 并用 g++ 编译, 给出了这些结果 :

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

钻入由 cg_ anoteate 产生的逐行输出,

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样您就可以很容易地识别问题行 - 在未排序版本中, 如果( data[c] 128) 线导致164 050 007 错误预测的有条件分支( Bcm) , 在缓存grind 的分支- 指示模型下, 而分类版本中它只造成 10 006 。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

详情请见性能辅导课程。

在对数据进行分类时,绩效大幅提高的原因是,如神秘论的回答所很好地解释的那样,分支预测罚款已经取消。

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

如果... 其它... 分支是指在满足条件时添加某种内容。 这种分支可以很容易地转换成有条件的移动说明, 并汇编成有条件的移动指示: cmovl, 在 x86 系统中。 分支和可能的分支预测处罚将被删除 。

因此,在C中,C++C中,将直接(不作任何优化)汇编成x86中有条件移动指令的语句是永久操作员.? :.。 因此,我们将上述语句改写为同等语句:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在英特尔核心i7-2600K @3.4 GHz和视觉工作室2010释放模式上,基准是:

x86x86

Scenario Time (seconds)
Branching - Random data 8.885
Branching - Sorted data 1.528
Branchless - Random data 3.716
Branchless - Sorted data 3.71

x64 x64

Scenario Time (seconds)
Branching - Random data 11.302
Branching - Sorted data 1.830
Branchless - Random data 2.736
Branchless - Sorted data 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们通过调查它们生成的 x86 组装来更仔细地看一看。 为了简单起见, 我们使用两个函数 最大 1 和 最大 2 。

最大 1 使用有条件分支, 如果... 其他... :

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

最大值2 使用永久操作员... ... ?

int max2(int a, int b) {
    return a > b ? a : b;
}

在一台X86-64型机器上,海合会-S生成以下组装。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

最大值2 使用代码要少得多, 原因是使用指令 cmovge 。 但真正的收益是 最大值2 不涉及分支跳跃, jmp , 如果预测结果不对, 则会有很大的性能处罚 。

那么,为什么有条件的行动效果更好呢?

在典型的 x86 处理器中,执行指令分为几个阶段。 大致上, 我们有不同的硬件可以处理不同阶段。 因此, 我们不必等待一个指令才能开始一个新的指令。 这被称为管道 。

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件移动的情况下,有条件移动指令的执行分为几个阶段,但前几个阶段,如Fetch和Decode,并不取决于前一个指令的结果;只有后几个阶段需要结果。因此,我们等待一个指令的执行时间的一小部分。这就是为什么有条件移动版本在预测容易时比分支慢的原因。

《计算机系统:程序员的观点》一书第二版对此作了详细解释。您可以查看3.6.6节的有条件移动指示,整个第四章的处理结构,以及5.11.2节的预测和错误处罚处的特殊待遇。

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。

你是树枝预测失败的受害者


分会的预测是什么?

考虑铁路交叉点:

依据CC-By-SA 3.

现在,为了争论起见,假设这是在1800年代, 在长途或无线电通信之前。

您是连接点的盲人接线员, 听到火车来电的声音。 您不知道该走哪条路。 您停止了火车, 询问司机他们想要的方向 。 然后您将开关设置得当 。

火车很重,而且有很多惰性, 所以它们需要永远的启动 并放慢速度。

有更好的办法吗?

如果你猜对了,它会继续。如果你猜错,船长会停下来,后退,喊你按开关。然后它就可以从另一条路重新开始。

如果你每次猜对一次,火车就永远不会停止。如果你猜错太频繁,火车就会花很多时间停下来、备份和重新开始。


考虑是否说明:在加工者一级,它是分支指令:

你是一个处理者,你看见一个分支。你不知道它会走哪条路。你做什么?你停止执行,等待以前的指令完成。然后,你继续走正确的道路。

现代处理器复杂,管道长。 这意味着它们永远需要“暖和”和“慢下来 ” 。

有更好的办法吗?

如果您猜对了, 您将继续执行 。 如果您猜错, 您需要冲洗管道并滚回分支 。 然后您就可以重新启动另一条路径 。

如果你每次都猜对了,处决永远不会停止。如果你猜错太频繁,你就会花很多时间拖延、倒退和重新开始。


这是分支预测。 我承认这不是最好的比喻, 因为火车只能用旗帜发出方向信号。 但在电脑上, 处理器不知道分支会朝哪个方向前进, 直到最后一刻。

您在战略上如何猜测如何将列车必须返回并沿着另一条路行驶的次数最小化 ? 您看看过去的历史 。 如果列车离开99%的时间, 那么您会猜到离开 。 如果列车转行, 那么您会换个猜想 。 如果列车每走三次, 您也会猜到同样的情况 。

换句话说,你尝试确定一个模式并遵循它。这或多或少是分支预测器的工作方式。

大多数应用程序都有良好的分支。 因此,现代分支预测器通常会达到超过90%的冲击率。 但是,当面对无法预见且没有可识别模式的分支时,分支预测器几乎毫无用处。

继续读到维基百科上的“Branch 预测家”文章。


正如上面所暗示的,罪魁祸首就是这个说法:

if (data[c] >= 128)
    sum += data[c];

请注意数据分布在 0 和 255 之间。 当对数据进行分类时, 大约前半段的迭代不会输入 if 语句 。 在此之后, 它们都会输入 if 语句 。

这是对分支预测器非常友好的, 因为分支连续向同一方向运行很多次。 即使是简单的饱和计数器也会正确预测分支, 除了在切换方向之后的几处迭代之外 。

快速可视化 :

T = branch taken
N = branch not taken

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)

然而,当数据完全随机时,分支预测器就变得毫无用处,因为它无法预测随机数据。因此,可能会有大约50%的误用(没有比随机猜测更好的了 ) 。

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T  ...

       = TTNTTTTNTNNTTT ...   (completely random - impossible to predict)

能够做些什么?

如果编译者无法将分支优化为有条件的动作, 您可以尝试一些黑客, 如果您愿意牺牲可读性来表现 。

替换:

if (data[c] >= 128)
    sum += data[c];

与:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

这将清除分支, 并替换为一些位元操作 。

(注意这个黑客并不完全等同原始的假称。 但在此情况下, 它对于数据的所有输入值都是有效的 。 )

基准:核心i7 920@3.5千兆赫

C++ - 2010 - x64 释放

Scenario Time (seconds)
Branching - Random data 11.777
Branching - Sorted data 2.352
Branchless - Random data 2.564
Branchless - Sorted data 2.587

Java - Netbeans 7.1.1 JDK 7 - x64

Scenario Time (seconds)
Branching - Random data 10.93293813
Branching - Sorted data 5.643797077
Branchless - Random data 3.113581453
Branchless - Sorted data 3.186068823

意见:

分支 : 分类的数据和未分类的数据之间有很大的差别。 在 Hack 中: 分类的数据和未分类的数据之间没有差别。 在 C++ 中, 黑客实际上比数据分类时的分支要慢一点 。

拇指的一般规则是避免在关键循环(如本例)中出现依赖数据的分支。


更新 :

GCC 4. 6.1 在 x64 上使用 -O3 或 -free-victorization 能够生成一个有条件的移动, 因此分解和未分解的数据之间没有差别, 两者都是快速的。 (或者说快速的 : 对于已经分解的个案, cmov 可以慢一些, 特别是如果 GCC 将其置于关键路径上而不是仅仅添加, 尤其是在 Broadwell 之前的Intel , 那里 cmov 有2个周期的悬浮 : gcc 优化旗 - O3 使代码慢于 - O2 ) VC+/ 2010 即使在 / Ox 下也无法为这个分支生成有条件的动作 。 Intel C++ Commonder (ICC) 11 也无法生成奇迹性的东西 。 它将两个环切换, 从而将不可预测的分支拉动到外部环 。 不仅能避免错误, , 而且它也比 VC++ 和 GC 生成的任意 还要快一倍 。 。 。 。 换 。

这表明即使是成熟的现代编译者 在优化代码的能力上 也会大不相同...

快速和简单理解的答案(阅读其他细节)

这个概念叫做分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

未排序