检查一个值是否存在于一个非常大的列表的最快方法是什么?
当前回答
如果您只想检查列表中是否存在一个元素,
7 in list_data
是最快的解决方案。请注意
7 in set_data
是一个近乎自由的操作,与集合的大小无关!从一个大列表中创建一个set要比在列表中慢300到400倍,所以如果您需要检查许多元素,首先创建一个set会更快。
用perfplot创建的Plot:
import perfplot
import numpy as np
def setup(n):
data = np.arange(n)
np.random.shuffle(data)
return data, set(data)
def list_in(data):
return 7 in data[0]
def create_set_from_list(data):
return set(data[0])
def set_in(data):
return 7 in data[1]
b = perfplot.bench(
setup=setup,
kernels=[list_in, set_in, create_set_from_list],
n_range=[2 ** k for k in range(24)],
xlabel="len(data)",
equality_check=None,
)
b.save("out.png")
b.show()
其他回答
最初的问题是:
知道一个值是否存在于一个列表(一个列表 它有数百万个值),它的索引是什么?
因此,有两件事需要发现:
是列表中的一项,和 索引是什么(如果在列表中)。
为此,我修改了@xslittlegrass代码来计算所有情况下的索引,并添加了一个额外的方法。
结果
方法是:
基本上,if x In b: return b。index(x) 在b.index(x)上尝试/捕获(跳过必须检查x是否在b中) Set——基本上如果x在Set (b):返回b.index(x) 平分——对b和它的下标排序,对x在排序(b)中进行二分搜索。 注意来自@ xsllittlegrass的mod,它返回排序后的b的下标, 而不是原来的b) 反向——为b形成一个反向查找字典d;然后 D [x]提供了x的索引。
结果表明,方法5速度最快。
有趣的是,try方法和set方法在时间上是等价的。
测试代码
import random
import bisect
import matplotlib.pyplot as plt
import math
import timeit
import itertools
def wrapper(func, *args, **kwargs):
" Use to produced 0 argument function for call it"
# Reference https://www.pythoncentral.io/time-a-python-function/
def wrapped():
return func(*args, **kwargs)
return wrapped
def method_in(a,b,c):
for i,x in enumerate(a):
if x in b:
c[i] = b.index(x)
else:
c[i] = -1
return c
def method_try(a,b,c):
for i, x in enumerate(a):
try:
c[i] = b.index(x)
except ValueError:
c[i] = -1
def method_set_in(a,b,c):
s = set(b)
for i,x in enumerate(a):
if x in s:
c[i] = b.index(x)
else:
c[i] = -1
return c
def method_bisect(a,b,c):
" Finds indexes using bisection "
# Create a sorted b with its index
bsorted = sorted([(x, i) for i, x in enumerate(b)], key = lambda t: t[0])
for i,x in enumerate(a):
index = bisect.bisect_left(bsorted,(x, ))
c[i] = -1
if index < len(a):
if x == bsorted[index][0]:
c[i] = bsorted[index][1] # index in the b array
return c
def method_reverse_lookup(a, b, c):
reverse_lookup = {x:i for i, x in enumerate(b)}
for i, x in enumerate(a):
c[i] = reverse_lookup.get(x, -1)
return c
def profile():
Nls = [x for x in range(1000,20000,1000)]
number_iterations = 10
methods = [method_in, method_try, method_set_in, method_bisect, method_reverse_lookup]
time_methods = [[] for _ in range(len(methods))]
for N in Nls:
a = [x for x in range(0,N)]
random.shuffle(a)
b = [x for x in range(0,N)]
random.shuffle(b)
c = [0 for x in range(0,N)]
for i, func in enumerate(methods):
wrapped = wrapper(func, a, b, c)
time_methods[i].append(math.log(timeit.timeit(wrapped, number=number_iterations)))
markers = itertools.cycle(('o', '+', '.', '>', '2'))
colors = itertools.cycle(('r', 'b', 'g', 'y', 'c'))
labels = itertools.cycle(('in', 'try', 'set', 'bisect', 'reverse'))
for i in range(len(time_methods)):
plt.plot(Nls,time_methods[i],marker = next(markers),color=next(colors),linestyle='-',label=next(labels))
plt.xlabel('list size', fontsize=18)
plt.ylabel('log(time)', fontsize=18)
plt.legend(loc = 'upper left')
plt.show()
profile()
听起来您的应用程序可能会从使用Bloom Filter数据结构中获得优势。
简而言之,bloom过滤器查找可以非常快速地告诉你一个值是否绝对不存在于一个集合中。否则,您可以执行较慢的查找,以获得可能在列表中的值的索引。因此,如果您的应用程序倾向于获得“未找到”结果,而不是“找到”结果,您可能会通过添加Bloom Filter看到速度的提高。
关于细节,维基百科提供了Bloom过滤器如何工作的很好的概述,在网上搜索“python Bloom过滤器库”将提供至少两个有用的实现。
空间数据的边缘情况
可能有更快的算法来处理空间数据(例如重构以使用k-d树),但检查向量是否在数组中的特殊情况是有用的:
如果你有空间数据(即笛卡尔坐标) 如果你有整数掩码(即数组过滤)
在这种情况下,我想知道由两点定义的(无向)边是否在(无向)边的集合中,这样
(pair in unique_pairs) | (pair[::-1] in unique_pairs) for pair in pairs
其中pair构成两个任意长度的向量(即形状(2,N))。
如果这些向量之间的距离是有意义的,那么检验可以用一个浮点不等式来表示
test_result = Norm(v1 - v2) < Tol
和“值存在于列表”是简单的任何(test_result)。
下面是整数对和R3向量对的示例代码和虚拟测试集生成器。
# 3rd party
import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt
# optional
try:
from tqdm import tqdm
except ModuleNotFoundError:
def tqdm(X, *args, **kwargs):
return X
print('tqdm not found. tqdm is a handy progress bar module.')
def get_float_r3_pairs(size):
""" generate dummy vector pairs in R3 (i.e. case of spatial data) """
coordinates = np.random.random(size=(size, 3))
pairs = []
for b in coordinates:
for a in coordinates:
pairs.append((a,b))
pairs = np.asarray(pairs)
return pairs
def get_int_pairs(size):
""" generate dummy integer pairs (i.e. case of array masking) """
coordinates = np.random.randint(0, size, size)
pairs = []
for b in coordinates:
for a in coordinates:
pairs.append((a,b))
pairs = np.asarray(pairs)
return pairs
def float_tol_pair_in_pairs(pair:np.ndarray, pairs:np.ndarray) -> np.ndarray:
"""
True if abs(a0 - b0) <= tol & abs(a1 - b1) <= tol for (ai1, aj2), (bi1, bj2)
in [(a01, a02), ... (aik, ajl)]
NB this is expected to be called in iteration so no sanitization is performed.
Parameters
----------
pair : np.ndarray
pair of vectors with shape (2, M)
pairs : np.ndarray
collection of vector pairs with shape (N, 2, M)
Returns
-------
np.ndarray
(pair in pairs) | (pair[::-1] in pairs).
"""
m1 = np.sum( abs(LA.norm(pairs - pair, axis=2)) <= (1e-03, 1e-03), axis=1 ) == 2
m2 = np.sum( abs(LA.norm(pairs - pair[::-1], axis=2)) <= (1e-03, 1e-03), axis=1 ) == 2
return m1 | m2
def get_unique_pairs(pairs:np.ndarray) -> np.ndarray:
"""
apply float_tol_pair_in_pairs for pair in pairs
Parameters
----------
pairs : np.ndarray
collection of vector pairs with shape (N, 2, M)
Returns
-------
np.ndarray
pair if not ((pair in rv) | (pair[::-1] in rv)) for pair in pairs
"""
pairs = np.asarray(pairs).reshape((len(pairs), 2, -1))
rv = [pairs[0]]
for pair in tqdm(pairs[1:], desc='finding unique pairs...'):
if not any(float_tol_pair_in_pairs(pair, rv)):
rv.append(pair)
return np.array(rv)
你可以把你的物品放在一个集合里。设置查找非常有效。
Try:
s = set(a)
if 7 in s:
# do stuff
在注释中,你说你想获取元素的索引。不幸的是,集合没有元素位置的概念。另一种方法是对列表进行预先排序,然后在每次需要查找元素时使用二分搜索。
a = [4,2,3,1,5,6]
index = dict((y,x) for x,y in enumerate(a))
try:
a_index = index[7]
except KeyError:
print "Not found"
else:
print "found"
只有在a没有改变的情况下,这才会是一个好主意,因此我们可以只执行一次dict()部分,然后重复使用它。如果a确实发生了变化,请提供更多关于您正在做什么的细节。
推荐文章
- 如何从matplotlib (pyplot。Figure vs matplotlib。figure) (frameon=False matplotlib中有问题)
- django test app error -在创建测试数据库时出现错误:创建数据库的权限被拒绝
- 识别使用pip安装的python包的依赖关系
- 从字符串变量导入模块
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合