是否需要一个特别的OpenJDK版本来支持新的苹果硅芯片?

我看到目前有macOS/OS X的JDK下载,但这些似乎只适用于x86处理器。对吗?如果是这样,我可以在哪里下载用于M1的OpenJDK版本?


当前回答

我尝试过Azul JDK 8。

我只是想说,虽然Azul JDK在Apple M1上原生运行,而且速度非常快,但仍然存在一些问题。特别是当一些Java代码需要调用c++代码时。

例如,我是一名大数据开发人员。我开始使用Azul JDK进行开发工作流程。但是我注意到切换后某些测试开始失败。例如,当测试写入Parquet/Avro文件时,它会失败。我认为这是因为有一些用c++为Parquet/Avro编写的原生东西,而不是为M1编译的。

由于这个特殊的原因,我被迫使用速度较慢的非m1 JDK。没有什么问题。

这里有一个我用Azul得到的错误的例子,我没有得到非m1 jdk:

- convert Base64 JSON back to rpo Avro *** FAILED ***
  org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 10.0 failed 1 times, most recent failure: Lost task 0.0 in stage 10.0 (TID 14, localhost, executor driver): org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] no native library is found for os.name=Mac and os.arch=aarch64
        at org.xerial.snappy.SnappyLoader.findNativeLibrary(SnappyLoader.java:331)
        at org.xerial.snappy.SnappyLoader.loadNativeLibrary(SnappyLoader.java:171)
        at org.xerial.snappy.SnappyLoader.load(SnappyLoader.java:152)
        at org.xerial.snappy.Snappy.<clinit>(Snappy.java:47)
        at org.apache.avro.file.SnappyCodec.compress(SnappyCodec.java:43)
        at org.apache.avro.file.DataFileStream$DataBlock.compressUsing(DataFileStream.java:358)
        at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:382)
        at org.apache.avro.file.DataFileWriter.sync(DataFileWriter.java:401)
        at org.apache.avro.file.DataFileWriter.flush(DataFileWriter.java:410)
        at org.apache.avro.file.DataFileWriter.close(DataFileWriter.java:433)
        at org.apache.avro.mapred.AvroOutputFormat$1.close(AvroOutputFormat.java:170)
        at org.apache.spark.internal.io.SparkHadoopWriter.close(SparkHadoopWriter.scala:101)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$12$$anonfun$apply$5.apply$mcV$sp(PairRDDFunctions.scala:1145)
        at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1393)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1145)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1125)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:108)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
  ...
  Cause: org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] no native library is found for os.name=Mac and os.arch=aarch64
  at org.xerial.snappy.SnappyLoader.findNativeLibrary(SnappyLoader.java:331)
  at org.xerial.snappy.SnappyLoader.loadNativeLibrary(SnappyLoader.java:171)
  at org.xerial.snappy.SnappyLoader.load(SnappyLoader.java:152)
  at org.xerial.snappy.Snappy.<clinit>(Snappy.java:47)
  at org.apache.avro.file.SnappyCodec.compress(SnappyCodec.java:43)
  at org.apache.avro.file.DataFileStream$DataBlock.compressUsing(DataFileStream.java:358)
  at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:382)
  at org.apache.avro.file.DataFileWriter.sync(DataFileWriter.java:401)
  at org.apache.avro.file.DataFileWriter.flush(DataFileWriter.java:410)
  at org.apache.avro.file.DataFileWriter.close(DataFileWriter.java:433)

正如你所看到的,它说:Cause: org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] no native library is found for os.name=Mac and os.arch=aarch64

我谷歌了一下这个问题,他们说原生库是为Spark的后续版本编译的,不幸的是。

这让我非常沮丧,我现在想要一台Windows笔记本电脑,哈哈。在M1芯片上运行Intel JDK有时会很慢,我不希望这样。

小心!

Update: They released new versions of their libraries with support for M1, I updated them in the projects and everything works, thank God. Sometimes these "native code errors" manifest themselves with different exceptions and this is additional P.I.T.A. that I have to deal with while my colleagues on windows laptops don't need to deal with it. The errors can be a bit unclear sometimes, but if you see something about native code in the error log, or words like "jna" or "jni", then it's an M1 chip problem.

其他回答

微软和Azul似乎是JEP 391与Windows移植(JEP 388)结合的主要推动者。他们有一个单独的GitHub存储库,实际上有一个针对macOS-aarch64的EA发行版。

我不确定与OpenJDK存储库的确切关系。

不仅仅是JEP-391。

有一个预览分支,https://github.com/openjdk/jdk-sandbox/tree/JEP-391-branch,你可以在Intel Mac上或直接在ARM Mac上使用交叉编译构建JDK 16早期访问(EA)。它运行良好。

以下是安装Oracle JDK 8并从Rosetta - https://www.oracle.com/in/java/technologies/javase/javase-jdk8-downloads.html运行它的步骤

下载macOS x64版本 在尝试安装该包时,如果Rosetta已经不存在,您将收到安装它的提示 其余的安装步骤与任何其他包相同。

您可以通过打开终端并输入以下命令来验证它是否工作:

java -version

您可以使用sdkman安装Java JDK(参见sdkman install):

vim .sdkman/etc/config

设置sdkman_rosetta2_compatible=false(参见sdkman config)

之后,您将看到一个与M1 jdk兼容的列表:

sdk list java

================================================================================
Available Java Versions
================================================================================
 Vendor        | Use | Version      | Dist    | Status     | Identifier
--------------------------------------------------------------------------------
 Azul Zulu     |     | 16.0.1       | zulu    |            | 16.0.1-zulu
               |     | 11.0.11      | zulu    |            | 11.0.11-zulu
               |     | 8.0.292      | zulu    |            | 8.0.292-zulu
 BellSoft      |     | 16.0.1       | librca  |            | 16.0.1-librca
               |     | 11.0.11      | librca  |            | 11.0.11-librca
               |     | 8.0.292      | librca  |            | 8.0.292-librca
 Java.net      |     | 18.ea.3      | open    |            | 18.ea.3-open
               |     | 18.ea.2      | open    |            | 18.ea.2-open
               |     | 18.ea.1      | open    |            | 18.ea.1-open
               |     | 17.ea.28     | open    |            | 17.ea.28-open
               |     | 17.ea.27     | open    |            | 17.ea.27-open
               |     | 17.ea.26     | open    |            | 17.ea.26-open
               |     | 17.ea.25     | open    |            | 17.ea.25-open
================================================================================

选择一个并使用命令sdk install java IDENTIFIER安装它,即:

SDK安装Java 8.0.292-zulu

brew install openjdk

以我为例,在MacBook Air (M1)上成功安装OpenJDK后,java命令仍然不起作用。我用

brew info openjdk

然后有一个命令喜欢

For the system Java wrappers to find this JDK, symlink it with
  sudo ln -sfn /opt/homebrew/opt/openjdk/libexec/openjdk.jdk /Library/Java/JavaVirtualMachines/openjdk.jdk

执行该命令,java命令生效。