I'm using a python script as a driver for a hydrodynamics code. When it comes time to run the simulation, I use subprocess.Popen to run the code, collect the output from stdout and stderr into a subprocess.PIPE --- then I can print (and save to a log-file) the output information, and check for any errors. The problem is, I have no idea how the code is progressing. If I run it directly from the command line, it gives me output about what iteration its at, what time, what the next time-step is, etc.
是否有一种方法既存储输出(用于日志记录和错误检查),又产生实时流输出?
我的代码的相关部分:
ret_val = subprocess.Popen( run_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True )
output, errors = ret_val.communicate()
log_file.write(output)
print output
if( ret_val.returncode ):
print "RUN failed\n\n%s\n\n" % (errors)
success = False
if( errors ): log_file.write("\n\n%s\n\n" % errors)
最初,我将run_command通过tee输送,以便将副本直接发送到日志文件,流仍然直接输出到终端——但这样我就不能存储任何错误(据我所知)。
目前我的临时解决方案是:
ret_val = subprocess.Popen( run_command, stdout=log_file, stderr=subprocess.PIPE, shell=True )
while not ret_val.poll():
log_file.flush()
然后,在另一个终端上运行tail -f log.txt (s.t. log_file = 'log.txt')。
我尝试过的所有上述解决方案都无法分离stderr和stdout输出(多个管道),或者当操作系统管道缓冲区已满时永远阻塞,这发生在你运行输出太快的命令时(在python poll() subprocess手册上对此有警告)。我发现唯一可靠的方法是通过选择,但这是一个posix-only解决方案:
import subprocess
import sys
import os
import select
# returns command exit status, stdout text, stderr text
# rtoutput: show realtime output while running
def run_script(cmd,rtoutput=0):
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
poller = select.poll()
poller.register(p.stdout, select.POLLIN)
poller.register(p.stderr, select.POLLIN)
coutput=''
cerror=''
fdhup={}
fdhup[p.stdout.fileno()]=0
fdhup[p.stderr.fileno()]=0
while sum(fdhup.values()) < len(fdhup):
try:
r = poller.poll(1)
except select.error, err:
if err.args[0] != EINTR:
raise
r=[]
for fd, flags in r:
if flags & (select.POLLIN | select.POLLPRI):
c = os.read(fd, 1024)
if rtoutput:
sys.stdout.write(c)
sys.stdout.flush()
if fd == p.stderr.fileno():
cerror+=c
else:
coutput+=c
else:
fdhup[fd]=1
return p.poll(), coutput.strip(), cerror.strip()
我认为subprocess. communication方法有点误导人:它实际上填充了您在subprocess.Popen中指定的stdout和stderr。
然而,从子进程中读取。可以提供给子流程的PIPE。Popen的stdout和stderr参数最终会填满OS管道缓冲区并导致应用程序死锁(特别是当你有多个必须使用subprocess的进程/线程时)。
我建议的解决方案是提供带有文件的标准输出和标准输出-并读取文件的内容,而不是从死锁PIPE中读取。这些文件可以是tempfile.NamedTemporaryFile()——当subprocess. communication写入这些文件时,也可以访问该文件进行读取。
下面是一个示例用法:
try:
with ProcessRunner(
("python", "task.py"), env=os.environ.copy(), seconds_to_wait=0.01
) as process_runner:
for out in process_runner:
print(out)
except ProcessError as e:
print(e.error_message)
raise
这是源代码,准备使用尽可能多的评论,因为我可以提供解释它的功能:
如果您正在使用python 2,请确保首先从pypi安装最新版本的subprocess32包。
import os
import sys
import threading
import time
import tempfile
import logging
if os.name == 'posix' and sys.version_info[0] < 3:
# Support python 2
import subprocess32 as subprocess
else:
# Get latest and greatest from python 3
import subprocess
logger = logging.getLogger(__name__)
class ProcessError(Exception):
"""Base exception for errors related to running the process"""
class ProcessTimeout(ProcessError):
"""Error that will be raised when the process execution will exceed a timeout"""
class ProcessRunner(object):
def __init__(self, args, env=None, timeout=None, bufsize=-1, seconds_to_wait=0.25, **kwargs):
"""
Constructor facade to subprocess.Popen that receives parameters which are more specifically required for the
Process Runner. This is a class that should be used as a context manager - and that provides an iterator
for reading captured output from subprocess.communicate in near realtime.
Example usage:
try:
with ProcessRunner(('python', task_file_path), env=os.environ.copy(), seconds_to_wait=0.01) as process_runner:
for out in process_runner:
print(out)
except ProcessError as e:
print(e.error_message)
raise
:param args: same as subprocess.Popen
:param env: same as subprocess.Popen
:param timeout: same as subprocess.communicate
:param bufsize: same as subprocess.Popen
:param seconds_to_wait: time to wait between each readline from the temporary file
:param kwargs: same as subprocess.Popen
"""
self._seconds_to_wait = seconds_to_wait
self._process_has_timed_out = False
self._timeout = timeout
self._process_done = False
self._std_file_handle = tempfile.NamedTemporaryFile()
self._process = subprocess.Popen(args, env=env, bufsize=bufsize,
stdout=self._std_file_handle, stderr=self._std_file_handle, **kwargs)
self._thread = threading.Thread(target=self._run_process)
self._thread.daemon = True
def __enter__(self):
self._thread.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self._thread.join()
self._std_file_handle.close()
def __iter__(self):
# read all output from stdout file that subprocess.communicate fills
with open(self._std_file_handle.name, 'r') as stdout:
# while process is alive, keep reading data
while not self._process_done:
out = stdout.readline()
out_without_trailing_whitespaces = out.rstrip()
if out_without_trailing_whitespaces:
# yield stdout data without trailing \n
yield out_without_trailing_whitespaces
else:
# if there is nothing to read, then please wait a tiny little bit
time.sleep(self._seconds_to_wait)
# this is a hack: terraform seems to write to buffer after process has finished
out = stdout.read()
if out:
yield out
if self._process_has_timed_out:
raise ProcessTimeout('Process has timed out')
if self._process.returncode != 0:
raise ProcessError('Process has failed')
def _run_process(self):
try:
# Start gathering information (stdout and stderr) from the opened process
self._process.communicate(timeout=self._timeout)
# Graceful termination of the opened process
self._process.terminate()
except subprocess.TimeoutExpired:
self._process_has_timed_out = True
# Force termination of the opened process
self._process.kill()
self._process_done = True
@property
def return_code(self):
return self._process.returncode
Python 3的TLDR:
import subprocess
import sys
with open("test.log", "wb") as f:
process = subprocess.Popen(your_command, stdout=subprocess.PIPE)
for c in iter(lambda: process.stdout.read(1), b""):
sys.stdout.buffer.write(c)
f.buffer.write(c)
你有两种方法来做到这一点,要么从read或readline函数创建一个迭代器,然后做:
import subprocess
import sys
# replace "w" with "wb" for Python 3
with open("test.log", "w") as f:
process = subprocess.Popen(your_command, stdout=subprocess.PIPE)
# replace "" with b'' for Python 3
for c in iter(lambda: process.stdout.read(1), ""):
sys.stdout.write(c)
f.write(c)
or
import subprocess
import sys
# replace "w" with "wb" for Python 3
with open("test.log", "w") as f:
process = subprocess.Popen(your_command, stdout=subprocess.PIPE)
# replace "" with b"" for Python 3
for line in iter(process.stdout.readline, ""):
sys.stdout.write(line)
f.write(line)
或者您可以创建一个读取器和一个写入器文件。将写入器传递给Popen并从读取器读取
import io
import time
import subprocess
import sys
filename = "test.log"
with io.open(filename, "wb") as writer, io.open(filename, "rb", 1) as reader:
process = subprocess.Popen(command, stdout=writer)
while process.poll() is None:
sys.stdout.write(reader.read())
time.sleep(0.5)
# Read the remaining
sys.stdout.write(reader.read())
通过这种方式,您可以将数据写入test.log和标准输出中。
文件方法的唯一优点是代码不会阻塞。因此,您可以在此期间做任何您想做的事情,并以无阻塞的方式随时从阅读器读取。当您使用PIPE时,read和readline函数将阻塞,直到分别将一个字符写入管道或将一行字符写入管道。