如何从数据帧中删除nan, inf和-inf值而不重置模式。use_inf_as_null?
我可以告诉dropna包括inf在其缺失值的定义,以便以下工作?
df.dropna(subset=["col1", "col2"], how="all")
如何从数据帧中删除nan, inf和-inf值而不重置模式。use_inf_as_null?
我可以告诉dropna包括inf在其缺失值的定义,以便以下工作?
df.dropna(subset=["col1", "col2"], how="all")
当前回答
首先用NaN替换()infs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
然后通过dropna()删除nan:
df.dropna(subset=["col1", "col2"], how="all", inplace=True)
例如:
>>> df = pd.DataFrame({"col1": [1, np.inf, -np.inf], "col2": [2, 3, np.nan]})
>>> df
col1 col2
0 1.0 2.0
1 inf 3.0
2 -inf NaN
>>> df.replace([np.inf, -np.inf], np.nan, inplace=True)
>>> df
col1 col2
0 1.0 2.0
1 NaN 3.0
2 NaN NaN
>>> df.dropna(subset=["col1", "col2"], how="all", inplace=True)
>>> df
col1 col2
0 1.0 2.0
1 NaN 3.0
同样的方法也适用于级数。
其他回答
使用(快捷简单):
df = df[np.isfinite(df).all(1)]
这个答案是基于DougR在另一个问题中的回答。 下面是一个示例代码:
import pandas as pd
import numpy as np
df=pd.DataFrame([1,2,3,np.nan,4,np.inf,5,-np.inf,6])
print('Input:\n',df,sep='')
df = df[np.isfinite(df).all(1)]
print('\nDropped:\n',df,sep='')
结果:
Input:
0
0 1.0000
1 2.0000
2 3.0000
3 NaN
4 4.0000
5 inf
6 5.0000
7 -inf
8 6.0000
Dropped:
0
0 1.0
1 2.0
2 3.0
4 4.0
6 5.0
8 6.0
上述解决方案将修改不在目标列中的inf。为了解决这个问题,
lst = [np.inf, -np.inf]
to_replace = {v: lst for v in ['col1', 'col2']}
df.replace(to_replace, np.nan)
使用选项上下文,无需永久设置use_inf_as_na就可以实现这一点。例如:
with pd.option_context('mode.use_inf_as_na', True):
df = df.dropna(subset=['col1', 'col2'], how='all')
当然,它可以被设置为永久地将inf视为NaN
pd.set_option('use_inf_as_na', True)
对于旧版本,请将use_inf_as_na替换为use_inf_as_null。
首先用NaN替换()infs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
然后通过dropna()删除nan:
df.dropna(subset=["col1", "col2"], how="all", inplace=True)
例如:
>>> df = pd.DataFrame({"col1": [1, np.inf, -np.inf], "col2": [2, 3, np.nan]})
>>> df
col1 col2
0 1.0 2.0
1 inf 3.0
2 -inf NaN
>>> df.replace([np.inf, -np.inf], np.nan, inplace=True)
>>> df
col1 col2
0 1.0 2.0
1 NaN 3.0
2 NaN NaN
>>> df.dropna(subset=["col1", "col2"], how="all", inplace=True)
>>> df
col1 col2
0 1.0 2.0
1 NaN 3.0
同样的方法也适用于级数。
你可以在np.isinf中使用pd.DataFrame.mask。首先你应该确保你的dataframe系列都是float类型。然后使用dropna现有的逻辑。
print(df)
col1 col2
0 -0.441406 inf
1 -0.321105 -inf
2 -0.412857 2.223047
3 -0.356610 2.513048
df = df.mask(np.isinf)
print(df)
col1 col2
0 -0.441406 NaN
1 -0.321105 NaN
2 -0.412857 2.223047
3 -0.356610 2.513048