我需要在numpy.array中找到唯一的行。

例如:

>>> a # I have
array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 0]])
>>> new_a # I want to get to
array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 1, 1, 0]])

我知道我可以创建一个集和循环数组,但我正在寻找一个有效的纯numpy解决方案。我相信有一种方法可以将数据类型设置为void,然后我可以使用numpy。唯一的,但我不知道如何让它工作。


当前回答

使用结构化数组的另一种选择是使用void类型的视图,将整行连接成单个项:

a = np.array([[1, 1, 1, 0, 0, 0],
              [0, 1, 1, 1, 0, 0],
              [0, 1, 1, 1, 0, 0],
              [1, 1, 1, 0, 0, 0],
              [1, 1, 1, 1, 1, 0]])

b = np.ascontiguousarray(a).view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
_, idx = np.unique(b, return_index=True)

unique_a = a[idx]

>>> unique_a
array([[0, 1, 1, 1, 0, 0],
       [1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 0]])

编辑 添加np。as毗连数组遵循@seberg的建议。如果数组不是连续的,这将降低方法的速度。

编辑 以上内容可以稍微加快,但代价可能是不清楚,可以这样做:

unique_a = np.unique(b).view(a.dtype).reshape(-1, a.shape[1])

此外,至少在我的系统上,性能方面它是相同的,甚至更好,比lexsort方法:

a = np.random.randint(2, size=(10000, 6))

%timeit np.unique(a.view(np.dtype((np.void, a.dtype.itemsize*a.shape[1])))).view(a.dtype).reshape(-1, a.shape[1])
100 loops, best of 3: 3.17 ms per loop

%timeit ind = np.lexsort(a.T); a[np.concatenate(([True],np.any(a[ind[1:]]!=a[ind[:-1]],axis=1)))]
100 loops, best of 3: 5.93 ms per loop

a = np.random.randint(2, size=(10000, 100))

%timeit np.unique(a.view(np.dtype((np.void, a.dtype.itemsize*a.shape[1])))).view(a.dtype).reshape(-1, a.shape[1])
10 loops, best of 3: 29.9 ms per loop

%timeit ind = np.lexsort(a.T); a[np.concatenate(([True],np.any(a[ind[1:]]!=a[ind[:-1]],axis=1)))]
10 loops, best of 3: 116 ms per loop

其他回答

np。Unique的工作原理是对一个扁平数组排序,然后查看每一项是否等于前一项。这可以手动完成,无需压平:

ind = np.lexsort(a.T)
a[ind[np.concatenate(([True],np.any(a[ind[1:]]!=a[ind[:-1]],axis=1)))]]

这个方法不使用元组,应该比这里给出的其他方法更快更简单。

注意:以前的版本在A[后面没有ind,这意味着使用了错误的索引。另外,Joe Kington提出了一个很好的观点,这确实产生了各种各样的中间副本。下面的方法通过创建一个排序副本,然后使用它的视图来生成更少的副本:

b = a[np.lexsort(a.T)]
b[np.concatenate(([True], np.any(b[1:] != b[:-1],axis=1)))]

这样更快,使用的内存更少。

同样,如果你想在ndarray中找到唯一的行,而不管数组中有多少个维度,下面的方法可以工作:

b = a[lexsort(a.reshape((a.shape[0],-1)).T)];
b[np.concatenate(([True], np.any(b[1:]!=b[:-1],axis=tuple(range(1,a.ndim)))))]

剩下的一个有趣的问题是,如果你想沿着任意维度数组的任意轴进行排序/惟一,这将更加困难。

编辑:

为了演示速度差异,我在ipython中对答案中描述的三种不同方法进行了一些测试。使用你的精确的a,没有太大的区别,尽管这个版本稍微快一点:

In [87]: %timeit unique(a.view(dtype)).view('<i8')
10000 loops, best of 3: 48.4 us per loop

In [88]: %timeit ind = np.lexsort(a.T); a[np.concatenate(([True], np.any(a[ind[1:]]!= a[ind[:-1]], axis=1)))]
10000 loops, best of 3: 37.6 us per loop

In [89]: %timeit b = [tuple(row) for row in a]; np.unique(b)
10000 loops, best of 3: 41.6 us per loop

然而,使用更大的a,这个版本最终会快得多:

In [96]: a = np.random.randint(0,2,size=(10000,6))

In [97]: %timeit unique(a.view(dtype)).view('<i8')
10 loops, best of 3: 24.4 ms per loop

In [98]: %timeit b = [tuple(row) for row in a]; np.unique(b)
10 loops, best of 3: 28.2 ms per loop

In [99]: %timeit ind = np.lexsort(a.T); a[np.concatenate(([True],np.any(a[ind[1:]]!= a[ind[:-1]],axis=1)))]
100 loops, best of 3: 3.25 ms per loop

还有另一个可能的解决方案

np.vstack({tuple(row) for row in a})

从NumPy 1.13开始,可以简单地选择轴来选择任何N-dim数组中的唯一值。要获得唯一的行,可以这样做:

Unique_rows = np。独特的(original_array轴= 0)

最直接的解决方案是通过使行成为字符串,使行成为单个项。然后可以使用numpy将每一行作为一个整体进行比较,以确定其唯一性。这个解决方案是可推广的,你只需要重塑和转置你的数组为其他组合。以下是所提供的问题的解决方案。

import numpy as np

original = np.array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 0]])

uniques, index = np.unique([str(i) for i in original], return_index=True)
cleaned = original[index]
print(cleaned)    

将:

 array([[0, 1, 1, 1, 0, 0],
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 1, 1, 0]])

把我的诺贝尔奖寄出去

这些答案对我都没用。我假设我的唯一行包含字符串而不是数字。然而,来自另一个帖子的答案确实起作用了:

来源:https://stackoverflow.com/a/38461043/5402386

你可以使用.count()和.index()列表的方法

coor = np.array([[10, 10], [12, 9], [10, 5], [12, 9]])
coor_tuple = [tuple(x) for x in coor]
unique_coor = sorted(set(coor_tuple), key=lambda x: coor_tuple.index(x))
unique_count = [coor_tuple.count(x) for x in unique_coor]
unique_index = [coor_tuple.index(x) for x in unique_coor]