我需要在numpy.array中找到唯一的行。

例如:

>>> a # I have
array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 0]])
>>> new_a # I want to get to
array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 1, 1, 0]])

我知道我可以创建一个集和循环数组,但我正在寻找一个有效的纯numpy解决方案。我相信有一种方法可以将数据类型设置为void,然后我可以使用numpy。唯一的,但我不知道如何让它工作。


当前回答

最直接的解决方案是通过使行成为字符串,使行成为单个项。然后可以使用numpy将每一行作为一个整体进行比较,以确定其唯一性。这个解决方案是可推广的,你只需要重塑和转置你的数组为其他组合。以下是所提供的问题的解决方案。

import numpy as np

original = np.array([[1, 1, 1, 0, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [0, 1, 1, 1, 0, 0],
       [1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 0]])

uniques, index = np.unique([str(i) for i in original], return_index=True)
cleaned = original[index]
print(cleaned)    

将:

 array([[0, 1, 1, 1, 0, 0],
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 1, 1, 0]])

把我的诺贝尔奖寄出去

其他回答

np。给出一个元组列表的唯一作品:

>>> np.unique([(1, 1), (2, 2), (3, 3), (4, 4), (2, 2)])
Out[9]: 
array([[1, 1],
       [2, 2],
       [3, 3],
       [4, 4]])

对于列表列表,它会引发TypeError: unhashable type: 'list'

import numpy as np
original = np.array([[1, 1, 1, 0, 0, 0],
                     [0, 1, 1, 1, 0, 0],
                     [0, 1, 1, 1, 0, 0],
                     [1, 1, 1, 0, 0, 0],
                     [1, 1, 1, 1, 1, 0]])
# create a view that the subarray as tuple and return unique indeies.
_, unique_index = np.unique(original.view(original.dtype.descr * original.shape[1]),
                            return_index=True)
# get unique set
print(original[unique_index])

我比较了速度的建议替代方案,惊奇地发现,void视图唯一解决方案甚至比numpy的带有axis参数的本机唯一解决方案还要快一点。如果你想要速度,你会想要

numpy.unique(
    a.view(numpy.dtype((numpy.void, a.dtype.itemsize*a.shape[1])))
).view(a.dtype).reshape(-1, a.shape[1])

我已经在npx.unique_rows中实现了最快的变体。

在GitHub上也有一个bug报告。


代码重现情节:

import numpy
import perfplot


def unique_void_view(a):
    return (
        numpy.unique(a.view(numpy.dtype((numpy.void, a.dtype.itemsize * a.shape[1]))))
        .view(a.dtype)
        .reshape(-1, a.shape[1])
    )


def lexsort(a):
    ind = numpy.lexsort(a.T)
    return a[
        ind[numpy.concatenate(([True], numpy.any(a[ind[1:]] != a[ind[:-1]], axis=1)))]
    ]


def vstack(a):
    return numpy.vstack([tuple(row) for row in a])


def unique_axis(a):
    return numpy.unique(a, axis=0)


perfplot.show(
    setup=lambda n: numpy.random.randint(2, size=(n, 20)),
    kernels=[unique_void_view, lexsort, vstack, unique_axis],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(a)",
    equality_check=None,
)

np。当我在np.random.random(100).重塑(10,10)上运行它时,它是唯一的,返回所有唯一的单个元素,但你想要唯一的行,所以首先你需要把它们放入元组:

array = #your numpy array of lists
new_array = [tuple(row) for row in array]
uniques = np.unique(new_array)

这是唯一的方法,我看到你改变类型做你想要的,我不确定如果列表迭代改变为元组是可以的,与你的“不循环”

为什么不使用pandas中的drop_duplicate:

>>> timeit pd.DataFrame(image.reshape(-1,3)).drop_duplicates().values
1 loops, best of 3: 3.08 s per loop

>>> timeit np.vstack({tuple(r) for r in image.reshape(-1,3)})
1 loops, best of 3: 51 s per loop