我经常遇到这样的情况:我想在声明查询的地方对查询进行求值。这通常是因为我需要对它进行多次迭代,计算成本很高。例如:

string raw = "...";
var lines = (from l in raw.Split('\n')
             let ll = l.Trim()
             where !string.IsNullOrEmpty(ll)
             select ll).ToList();

这很好。但是如果我不打算修改结果,那么我也可以调用ToArray()而不是ToList()。

然而,我想知道ToArray()是否通过首先调用ToList()来实现,因此内存效率比只调用ToList()低。

我疯了吗?我是否应该调用ToArray() -在知道内存不会被分配两次的情况下安全可靠?


当前回答

一个很晚的答案,但我认为这对谷歌人有帮助。

They both suck when they created using linq. They both implement same code to resize buffer if necessary. ToArray internally uses a class to convert IEnumerable<> to array, by allocating an array of 4 elements. If that is not enough than it doubles the size by creating a new array double the size of current and copying current array to it. At the end it allocates a new array of count of your items. If your query returns 129 elements then ToArray will make 6 allocations and memory copy operations to create a 256 element array and than am another array of 129 to return. so much for memory efficiency.

ToList做同样的事情,但是它跳过了最后的分配,因为您可以在将来添加项。List不关心它是从linq查询创建的还是手动创建的。

List在内存上更好,但在cpu上更差,因为List是一个通用的解决方案,每个操作都需要范围检查,除了.net内部的数组范围检查之外。

因此,如果你将迭代你的结果集太多次,那么数组是很好的,因为它意味着比列表更少的范围检查,编译器通常优化数组的顺序访问。

如果在创建List时指定capacity参数,则它的初始化分配可以更好。在这种情况下,它将只分配数组一次,假设您知道结果大小。linq的ToList没有指定重载来提供它,因此我们必须创建扩展方法,该方法创建一个具有给定容量的列表,然后使用list <>. addrange。

为了完成这个问题,我必须写出下面的句子

At the end, you can use either an ToArray, or ToList, performance will not be so different ( see answer of @EMP ). You are using C#. If you need performance then do not worry about writing about high performance code, but worry about not writing bad performance code. Always target x64 for high performance code. AFAIK, x64 JIT is based on C++ compiler, and does some funny things like tail recursion optimizations. With 4.5 you can also enjoy the profile guided optimization and multi core JIT. At last, you can use async/await pattern to process it quicker.

其他回答

编辑2:(这是对原始答案的更正)

使用基准。NET,我们可以通过性能测量来确认,公认的答案实际上是正确的:ToList在一般情况下更快,因为它不需要从已分配的缓冲区中修剪空空间。ToArray可能会执行额外的分配和复制操作,以使缓冲区的大小精确到元素的数量。

为了确认这一点,使用下面的基准测试。

[MemoryDiagnoser]
[ShortRunJob]
public class Benchmarks
{
    [Params(0, 1, 6, 10, 42, 100, 1337, 10000)]
    public int Count { get; set; }

    public IEnumerable<int> Items => Enumerable.Range(0, Count).Where(i => i > 0);

    [Benchmark(Baseline = true)]
    public int[] ToArray() => Items.ToArray();

    [Benchmark]
    public List<int> ToList() => Items.ToList();
}

结果证实,在大多数情况下,ToList要快10% - 15%。

BenchmarkDotNet=v0.13.1, OS=Windows 10.0.22000
Intel Core i9-10885H CPU 2.40GHz, 1 CPU, 16 logical and 8 physical cores
.NET SDK=6.0.302
  [Host]     : .NET 6.0.7 (6.0.722.32202), X64 RyuJIT
  DefaultJob : .NET 6.0.7 (6.0.722.32202), X64 RyuJIT


|  Method | Count |         Mean |      Error |     StdDev | Ratio | RatioSD |   Gen 0 |  Gen 1 | Allocated |
|-------- |------ |-------------:|-----------:|-----------:|------:|--------:|--------:|-------:|----------:|
| ToArray |     0 |     29.73 ns |   0.546 ns |   0.536 ns |  1.00 |    0.00 |  0.0067 |      - |      56 B |
|  ToList |     0 |     31.51 ns |   0.485 ns |   0.405 ns |  1.06 |    0.02 |  0.0105 |      - |      88 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |     1 |     37.36 ns |   0.314 ns |   0.294 ns |  1.00 |    0.00 |  0.0114 |      - |      96 B |
|  ToList |     1 |     36.75 ns |   0.605 ns |   0.537 ns |  0.98 |    0.01 |  0.0153 |      - |     128 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |     6 |    100.05 ns |   1.522 ns |   1.349 ns |  1.00 |    0.00 |  0.0286 |      - |     240 B |
|  ToList |     6 |     85.16 ns |   0.808 ns |   0.756 ns |  0.85 |    0.01 |  0.0267 |      - |     224 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |    10 |    137.20 ns |   2.766 ns |   2.452 ns |  1.00 |    0.00 |  0.0372 |      - |     312 B |
|  ToList |    10 |    123.05 ns |   2.198 ns |   1.949 ns |  0.90 |    0.01 |  0.0372 |      - |     312 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |    42 |    398.25 ns |   6.583 ns |   5.836 ns |  1.00 |    0.00 |  0.0877 |      - |     736 B |
|  ToList |    42 |    352.04 ns |   4.976 ns |   4.411 ns |  0.88 |    0.02 |  0.0887 |      - |     744 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |   100 |    730.80 ns |   6.501 ns |   6.081 ns |  1.00 |    0.00 |  0.1488 |      - |   1,248 B |
|  ToList |   100 |    705.49 ns |   9.947 ns |   9.305 ns |  0.97 |    0.01 |  0.1526 |      - |   1,280 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray |  1337 |  8,023.57 ns | 147.388 ns | 137.867 ns |  1.00 |    0.00 |  1.6785 | 0.0458 |  14,056 B |
|  ToList |  1337 |  7,980.27 ns | 138.469 ns | 122.749 ns |  1.00 |    0.02 |  1.9989 | 0.1221 |  16,736 B |
|         |       |              |            |            |       |         |         |        |           |
| ToArray | 10000 | 57,037.19 ns | 510.492 ns | 452.538 ns |  1.00 |    0.00 | 12.6343 | 1.7700 | 106,280 B |
|  ToList | 10000 | 57,728.15 ns | 583.353 ns | 517.127 ns |  1.01 |    0.01 | 15.5640 | 5.1270 | 131,496 B |

作为参考,下面是原始答案,不幸的是,它只在一个非常特殊的情况下执行基准测试,避免了中间的调整大小和复制操作。

最初的回答:

现在已经是2020年了,每个人都在使用。net Core 3.1,所以我决定用Benchmark.NET运行一些基准测试。

TL;DR: ToArray()在性能方面更好,如果不打算改变集合,则可以更好地传达意图。

编辑:从注释中可以看出,这些基准测试可能不是指示性的,因为Enumerable.Range(…)返回一个IEnumerable<T>,其中包含关于序列大小的信息,随后在ToArray()的优化中使用它来预分配正确大小的数组。考虑为您的具体场景手动测试性能。


    [MemoryDiagnoser]
    public class Benchmarks
    {
        [Params(0, 1, 6, 10, 39, 100, 666, 1000, 1337, 10000)]
        public int Count { get; set; }
    
        public IEnumerable<int> Items => Enumerable.Range(0, Count);
    
        [Benchmark(Description = "ToArray()", Baseline = true)]
        public int[] ToArray() => Items.ToArray();
    
        [Benchmark(Description = "ToList()")]
        public List<int> ToList() => Items.ToList();
    
        public static void Main() => BenchmarkRunner.Run<Benchmarks>();
    }

结果如下:


    BenchmarkDotNet=v0.12.0, OS=Windows 10.0.14393.3443 (1607/AnniversaryUpdate/Redstone1)
    Intel Core i5-4460 CPU 3.20GHz (Haswell), 1 CPU, 4 logical and 4 physical cores
    Frequency=3124994 Hz, Resolution=320.0006 ns, Timer=TSC
    .NET Core SDK=3.1.100
      [Host]     : .NET Core 3.1.0 (CoreCLR 4.700.19.56402, CoreFX 4.700.19.56404), X64 RyuJIT
      DefaultJob : .NET Core 3.1.0 (CoreCLR 4.700.19.56402, CoreFX 4.700.19.56404), X64 RyuJIT
    
    
    |    Method | Count |          Mean |       Error |      StdDev |        Median | Ratio | RatioSD |   Gen 0 | Gen 1 | Gen 2 | Allocated |
    |---------- |------ |--------------:|------------:|------------:|--------------:|------:|--------:|--------:|------:|------:|----------:|
    | ToArray() |     0 |      7.357 ns |   0.2096 ns |   0.1960 ns |      7.323 ns |  1.00 |    0.00 |       - |     - |     - |         - |
    |  ToList() |     0 |     13.174 ns |   0.2094 ns |   0.1958 ns |     13.084 ns |  1.79 |    0.05 |  0.0102 |     - |     - |      32 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |     1 |     23.917 ns |   0.4999 ns |   0.4676 ns |     23.954 ns |  1.00 |    0.00 |  0.0229 |     - |     - |      72 B |
    |  ToList() |     1 |     33.867 ns |   0.7350 ns |   0.6876 ns |     34.013 ns |  1.42 |    0.04 |  0.0331 |     - |     - |     104 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |     6 |     28.242 ns |   0.5071 ns |   0.4234 ns |     28.196 ns |  1.00 |    0.00 |  0.0280 |     - |     - |      88 B |
    |  ToList() |     6 |     43.516 ns |   0.9448 ns |   1.1949 ns |     42.896 ns |  1.56 |    0.06 |  0.0382 |     - |     - |     120 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |    10 |     31.636 ns |   0.5408 ns |   0.4516 ns |     31.657 ns |  1.00 |    0.00 |  0.0331 |     - |     - |     104 B |
    |  ToList() |    10 |     53.870 ns |   1.2988 ns |   2.2403 ns |     53.415 ns |  1.77 |    0.07 |  0.0433 |     - |     - |     136 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |    39 |     58.896 ns |   0.9441 ns |   0.8369 ns |     58.548 ns |  1.00 |    0.00 |  0.0713 |     - |     - |     224 B |
    |  ToList() |    39 |    138.054 ns |   2.8185 ns |   3.2458 ns |    138.937 ns |  2.35 |    0.08 |  0.0815 |     - |     - |     256 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |   100 |    119.167 ns |   1.6195 ns |   1.4357 ns |    119.120 ns |  1.00 |    0.00 |  0.1478 |     - |     - |     464 B |
    |  ToList() |   100 |    274.053 ns |   5.1073 ns |   4.7774 ns |    272.242 ns |  2.30 |    0.06 |  0.1578 |     - |     - |     496 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |   666 |    569.920 ns |  11.4496 ns |  11.2450 ns |    571.647 ns |  1.00 |    0.00 |  0.8688 |     - |     - |    2728 B |
    |  ToList() |   666 |  1,621.752 ns |  17.1176 ns |  16.0118 ns |  1,623.566 ns |  2.85 |    0.05 |  0.8793 |     - |     - |    2760 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |  1000 |    796.705 ns |  16.7091 ns |  19.8910 ns |    796.610 ns |  1.00 |    0.00 |  1.2951 |     - |     - |    4064 B |
    |  ToList() |  1000 |  2,453.110 ns |  48.1121 ns |  65.8563 ns |  2,460.190 ns |  3.09 |    0.10 |  1.3046 |     - |     - |    4096 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() |  1337 |  1,057.983 ns |  20.9810 ns |  41.4145 ns |  1,041.028 ns |  1.00 |    0.00 |  1.7223 |     - |     - |    5416 B |
    |  ToList() |  1337 |  3,217.550 ns |  62.3777 ns |  61.2633 ns |  3,203.928 ns |  2.98 |    0.13 |  1.7357 |     - |     - |    5448 B |
    |           |       |               |             |             |               |       |         |         |       |       |           |
    | ToArray() | 10000 |  7,309.844 ns | 160.0343 ns | 141.8662 ns |  7,279.387 ns |  1.00 |    0.00 | 12.6572 |     - |     - |   40064 B |
    |  ToList() | 10000 | 23,858.032 ns | 389.6592 ns | 364.4874 ns | 23,759.001 ns |  3.26 |    0.08 | 12.6343 |     - |     - |   40096 B |
    
    // * Hints *
    Outliers
      Benchmarks.ToArray(): Default -> 2 outliers were removed (35.20 ns, 35.29 ns)
      Benchmarks.ToArray(): Default -> 2 outliers were removed (38.51 ns, 38.88 ns)
      Benchmarks.ToList(): Default  -> 1 outlier  was  removed (64.69 ns)
      Benchmarks.ToArray(): Default -> 1 outlier  was  removed (67.02 ns)
      Benchmarks.ToArray(): Default -> 1 outlier  was  removed (130.08 ns)
      Benchmarks.ToArray(): Default -> 1 outlier  was  detected (541.82 ns)
      Benchmarks.ToArray(): Default -> 1 outlier  was  removed (7.82 us)
    
    // * Legends *
      Count     : Value of the 'Count' parameter
      Mean      : Arithmetic mean of all measurements
      Error     : Half of 99.9% confidence interval
      StdDev    : Standard deviation of all measurements
      Median    : Value separating the higher half of all measurements (50th percentile)
      Ratio     : Mean of the ratio distribution ([Current]/[Baseline])
      RatioSD   : Standard deviation of the ratio distribution ([Current]/[Baseline])
      Gen 0     : GC Generation 0 collects per 1000 operations
      Gen 1     : GC Generation 1 collects per 1000 operations
      Gen 2     : GC Generation 2 collects per 1000 operations
      Allocated : Allocated memory per single operation (managed only, inclusive, 1KB = 1024B)
      1 ns      : 1 Nanosecond (0.000000001 sec)

我发现人们在这里做的其他基准测试都有不足,所以这里是我的尝试。如果你发现我的方法有问题,请告诉我。

/* This is a benchmarking template I use in LINQPad when I want to do a
 * quick performance test. Just give it a couple of actions to test and
 * it will give you a pretty good idea of how long they take compared
 * to one another. It's not perfect: You can expect a 3% error margin
 * under ideal circumstances. But if you're not going to improve
 * performance by more than 3%, you probably don't care anyway.*/
void Main()
{
    // Enter setup code here
    var values = Enumerable.Range(1, 100000)
        .Select(i => i.ToString())
        .ToArray()
        .Select(i => i);
    values.GetType().Dump();
    var actions = new[]
    {
        new TimedAction("ToList", () =>
        {
            values.ToList();
        }),
        new TimedAction("ToArray", () =>
        {
            values.ToArray();
        }),
        new TimedAction("Control", () =>
        {
            foreach (var element in values)
            {
                // do nothing
            }
        }),
        // Add tests as desired
    };
    const int TimesToRun = 1000; // Tweak this as necessary
    TimeActions(TimesToRun, actions);
}


#region timer helper methods
// Define other methods and classes here
public void TimeActions(int iterations, params TimedAction[] actions)
{
    Stopwatch s = new Stopwatch();
    int length = actions.Length;
    var results = new ActionResult[actions.Length];
    // Perform the actions in their initial order.
    for (int i = 0; i < length; i++)
    {
        var action = actions[i];
        var result = results[i] = new ActionResult { Message = action.Message };
        // Do a dry run to get things ramped up/cached
        result.DryRun1 = s.Time(action.Action, 10);
        result.FullRun1 = s.Time(action.Action, iterations);
    }
    // Perform the actions in reverse order.
    for (int i = length - 1; i >= 0; i--)
    {
        var action = actions[i];
        var result = results[i];
        // Do a dry run to get things ramped up/cached
        result.DryRun2 = s.Time(action.Action, 10);
        result.FullRun2 = s.Time(action.Action, iterations);
    }
    results.Dump();
}

public class ActionResult
{
    public string Message { get; set; }
    public double DryRun1 { get; set; }
    public double DryRun2 { get; set; }
    public double FullRun1 { get; set; }
    public double FullRun2 { get; set; }
}

public class TimedAction
{
    public TimedAction(string message, Action action)
    {
        Message = message;
        Action = action;
    }
    public string Message { get; private set; }
    public Action Action { get; private set; }
}

public static class StopwatchExtensions
{
    public static double Time(this Stopwatch sw, Action action, int iterations)
    {
        sw.Restart();
        for (int i = 0; i < iterations; i++)
        {
            action();
        }
        sw.Stop();

        return sw.Elapsed.TotalMilliseconds;
    }
}
#endregion

你可以在这里下载LINQPad脚本。

结果:

调整上面的代码,你会发现:

当处理较小的数组时,差异就不那么显著了。 在处理整型而不是字符串时,这种差异不太显著。 使用大型结构体而不是字符串通常会花费更多的时间,但并不会真正改变比例。

这与投票最多的答案的结论一致:

除非您的代码经常生成许多大型数据列表,否则不太可能注意到性能上的差异。(当创建1000个包含100K字符串的列表时,只有200ms的差异。) ToList()始终运行得更快,如果不打算长时间保留结果,那么它是一个更好的选择。

更新

@JonHanna指出,根据Select的实现,ToList()或ToArray()实现可以提前预测结果集合的大小。将上面代码中的. select (i => i)替换为Where(i => true)会产生非常相似的结果,并且更有可能这样做,而不管. net实现如何。

我知道这是一个老帖子,但在有了同样的问题和做了一些研究之后,我发现了一些有趣的东西,可能值得分享。

首先,我同意@mquander和他的回答。在性能方面,两者是相同的。

但是,我一直在使用Reflector查看System.Linq.Enumerable扩展名称空间中的方法,并注意到一个非常常见的优化。 只要可能,IEnumerable<T>源就转换为IList<T>或ICollection<T>来优化方法。例如,查看ElementAt(int)。

有趣的是,微软选择只优化IList<T>,而不是IList。微软似乎更喜欢使用IList<T>接口。

您应该根据理想的设计选择来决定使用ToList还是ToArray。如果您想要一个只能通过索引迭代和访问的集合,请选择ToArray。如果您希望以后能够轻松地从集合中添加和删除额外的功能,那么可以使用ToList(并不是说您不能添加到数组中,但这通常不是合适的工具)。

如果性能很重要,您还应该考虑哪些操作会更快。实际上,您不会调用ToList或ToArray一百万次,但可能会对获得的集合进行一百万次操作。在这方面[]更好,因为List<>是[],有一些开销。查看这个线程的一些效率比较:List<int>或int[]

在我自己不久前的测试中,我发现ToArray更快。我不确定这些测试有多偏颇。然而,性能差异是如此微不足道,只有在循环运行这些查询数百万次时才能明显看出。

除非您只是需要一个数组来满足其他约束,否则您应该使用ToList。在大多数情况下,ToArray会比ToList分配更多的内存。

两者都使用数组进行存储,但是ToList有一个更灵活的约束。它需要数组至少与集合中的元素数量一样大。如果数组更大,这不是问题。但是ToArray需要数组的大小精确到元素的数量。

为了满足这个约束,ToArray通常比ToList多做一次分配。一旦它有了一个足够大的数组,它就会分配一个完全正确大小的数组,并将元素复制回该数组中。唯一可以避免这种情况的情况是当数组的增长算法恰好与需要存储的元素数量一致时(绝对是少数)。

EDIT

有几个人问我在List<T>值中有额外的未使用内存的后果。

这是一个合理的担忧。如果创建的集合寿命很长,在创建后从未被修改过,并且有很高的机会落在Gen2堆中,那么您可能会更好地预先分配额外的ToArray。

总的来说,我发现这种情况比较罕见。更常见的情况是,大量ToArray调用被立即传递给其他短期内存使用,在这种情况下,ToList显然更好。

这里的关键是分析,分析,再分析更多。