是的,它是在R中使用<- (or = or ->)的子赋值来复制整个对象。您可以使用tracemem(DT)和. internal (inspect(DT))进行跟踪,如下所示。数据。表特性:=和set()通过引用传递给它们的任何对象赋值。因此,如果该对象之前被复制过(通过子赋值<-或显式复制(DT)),那么它就是通过引用修改的复制。
DT <- data.table(a = c(1, 2), b = c(11, 12))
newDT <- DT
.Internal(inspect(DT))
# @0000000003B7E2A0 19 VECSXP g0c7 [OBJ,NAM(2),ATT] (len=2, tl=100)
# @00000000040C2288 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040C2250 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,12
# ATTRIB: # ..snip..
.Internal(inspect(newDT)) # precisely the same object at this point
# @0000000003B7E2A0 19 VECSXP g0c7 [OBJ,NAM(2),ATT] (len=2, tl=100)
# @00000000040C2288 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040C2250 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,12
# ATTRIB: # ..snip..
tracemem(newDT)
# [1] "<0x0000000003b7e2a0"
newDT$b[2] <- 200
# tracemem[0000000003B7E2A0 -> 00000000040ED948]:
# tracemem[00000000040ED948 -> 00000000040ED830]: .Call copy $<-.data.table $<-
.Internal(inspect(DT))
# @0000000003B7E2A0 19 VECSXP g0c7 [OBJ,NAM(2),TR,ATT] (len=2, tl=100)
# @00000000040C2288 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040C2250 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,12
# ATTRIB: # ..snip..
.Internal(inspect(newDT))
# @0000000003D97A58 19 VECSXP g0c7 [OBJ,NAM(2),ATT] (len=2, tl=100)
# @00000000040ED7F8 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040ED8D8 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,200
# ATTRIB: # ..snip..
请注意,即使a没有改变,a也被复制了(不同的十六进制值表示vector的新副本)。甚至整个b都被复制了,而不仅仅是改变需要改变的元素。对于大数据,避免这样做是很重要的,以及为什么在data.table中引入:=和set()。
现在,使用我们复制的newDT,我们可以通过引用修改它:
newDT
# a b
# [1,] 1 11
# [2,] 2 200
newDT[2, b := 400]
# a b # See FAQ 2.21 for why this prints newDT
# [1,] 1 11
# [2,] 2 400
.Internal(inspect(newDT))
# @0000000003D97A58 19 VECSXP g0c7 [OBJ,NAM(2),ATT] (len=2, tl=100)
# @00000000040ED7F8 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040ED8D8 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,400
# ATTRIB: # ..snip ..
注意,所有3个十六进制值(列点向量和2列中的每一列)保持不变。所以它是真正的参考修改,没有任何副本。
或者,我们可以通过引用修改原来的DT:
DT[2, b := 600]
# a b
# [1,] 1 11
# [2,] 2 600
.Internal(inspect(DT))
# @0000000003B7E2A0 19 VECSXP g0c7 [OBJ,NAM(2),ATT] (len=2, tl=100)
# @00000000040C2288 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 1,2
# @00000000040C2250 14 REALSXP g0c2 [NAM(2)] (len=2, tl=0) 11,600
# ATTRIB: # ..snip..
这些十六进制值与我们上面看到的DT的原始值相同。输入example(copy)查看更多使用tracemem并与data.frame进行比较的示例。
顺便说一句,如果你tracemem(DT),那么DT[2,b:=600],你会看到一个拷贝报告。这是print方法执行的前10行的副本。当使用invisible()包装或在函数或脚本中调用时,print方法不会被调用。
All this applies inside functions too; i.e., := and set() do not copy on write, even within functions. If you need to modify a local copy, then call x=copy(x) at the start of the function. But, remember data.table is for large data (as well as faster programming advantages for small data). We deliberately don't want to copy large objects (ever). As a result we don't need to allow for the usual 3* working memory factor rule of thumb. We try to only need working memory as large as one column (i.e. a working memory factor of 1/ncol rather than 3).