我用R,我有两个数据帧:胡萝卜和黄瓜。每个数据帧都有一个数字列,列出了所有测量的胡萝卜(总共:100k胡萝卜)和黄瓜(总共:50k黄瓜)的长度。
我希望在同一个图上绘制两个直方图——胡萝卜长度和黄瓜长度。它们重叠了,所以我想我也需要一些透明度。我还需要使用相对频率,而不是绝对频率,因为每个组中的实例数量是不同的。
这样的东西会很好,但我不明白如何从我的两个表创建它:
我用R,我有两个数据帧:胡萝卜和黄瓜。每个数据帧都有一个数字列,列出了所有测量的胡萝卜(总共:100k胡萝卜)和黄瓜(总共:50k黄瓜)的长度。
我希望在同一个图上绘制两个直方图——胡萝卜长度和黄瓜长度。它们重叠了,所以我想我也需要一些透明度。我还需要使用相对频率,而不是绝对频率,因为每个组中的实例数量是不同的。
这样的东西会很好,但我不明白如何从我的两个表创建它:
当前回答
这里是类似于我只以r为基数给出的ggplot2的版本。我从@nullglob复制了一些。
生成数据
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
您不需要像使用ggplot2那样将其放入数据帧中。这种方法的缺点是你必须写出更多的情节细节。这样做的好处是你可以控制更多的情节细节。
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
其他回答
你链接的图片是密度曲线,不是直方图。
如果您一直在阅读ggplot,那么可能您唯一缺少的是将两个数据帧合并为一个长数据帧。
那么,让我们从你拥有的两组独立的数据开始,并将它们结合起来。
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
在那之后,如果你的数据已经是长格式的,这是不必要的,你只需要一行来绘制你的图表。
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
现在,如果你真的想要直方图,下面的方法就可以了。注意,必须从默认的"stack"参数更改位置。如果您不知道您的数据应该是什么样子,您可能会错过这一点。更高的alpha看起来更好。还要注意,我把它做成了密度直方图。很容易删除y = ..density..把它找回来。
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
另外,我评论了Dirk的问题,所有的参数都可以简单地在hist命令中。有人问我怎么才能做到。接下来得出的正是德克的数字。
set.seed(42)
hist(rnorm(500,4), col=rgb(0,0,1,1/4), xlim=c(0,10))
hist(rnorm(500,6), col=rgb(1,0,0,1/4), xlim=c(0,10), add = TRUE)
Plotly的R API可能对你有用。下图在这里。
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
坦白说,我是队里的。
下面是一个在“经典”R图形中如何做到这一点的例子:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
唯一的问题是,如果直方图断点是对齐的,它看起来会更好,这可能需要手动完成(在传递给hist的参数中)。
下面是我写的一个函数,它使用伪透明来表示重叠的直方图
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
下面是使用R对透明颜色的支持的另一种方法
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
最终的结果是这样的:
这么多伟大的答案,但由于我刚刚写了一个函数('basicPlotteR'包中的plotMultipleHistograms())函数来做到这一点,我想我会添加另一个答案。
这个函数的优点是,它自动设置适当的X轴和Y轴限制,并定义在所有分布中使用的公共容器集。
下面是如何使用它:
# Install the plotteR package
install.packages("devtools")
devtools::install_github("JosephCrispell/basicPlotteR")
library(basicPlotteR)
# Set the seed
set.seed(254534)
# Create random samples from a normal distribution
distributions <- list(rnorm(500, mean=5, sd=0.5),
rnorm(500, mean=8, sd=5),
rnorm(500, mean=20, sd=2))
# Plot overlapping histograms
plotMultipleHistograms(distributions, nBins=20,
colours=c(rgb(1,0,0, 0.5), rgb(0,0,1, 0.5), rgb(0,1,0, 0.5)),
las=1, main="Samples from normal distribution", xlab="Value")
plotMultipleHistograms()函数可以接受任意数量的分布,并且所有一般的绘图参数都应该与它一起工作(例如:las, main等)。