我最近对算法产生了兴趣,并开始通过编写简单的实现来探索算法,然后以各种方式优化它。
我已经熟悉了用于分析运行时的标准Python模块(对于大多数事情,我发现IPython中的timeit魔术函数就足够了),但我也对内存使用感兴趣,所以我也可以探索这些权衡(例如,缓存以前计算值的表的成本与根据需要重新计算它们的成本)。是否有一个模块,将为我分析给定函数的内存使用情况?
我最近对算法产生了兴趣,并开始通过编写简单的实现来探索算法,然后以各种方式优化它。
我已经熟悉了用于分析运行时的标准Python模块(对于大多数事情,我发现IPython中的timeit魔术函数就足够了),但我也对内存使用感兴趣,所以我也可以探索这些权衡(例如,缓存以前计算值的表的成本与根据需要重新计算它们的成本)。是否有一个模块,将为我分析给定函数的内存使用情况?
当前回答
也许它有帮助: <看到额外的>
pip install gprof2dot
sudo apt-get install graphviz
gprof2dot -f pstats profile_for_func1_001 | dot -Tpng -o profile.png
def profileit(name):
"""
@profileit("profile_for_func1_001")
"""
def inner(func):
def wrapper(*args, **kwargs):
prof = cProfile.Profile()
retval = prof.runcall(func, *args, **kwargs)
# Note use of name from outer scope
prof.dump_stats(name)
return retval
return wrapper
return inner
@profileit("profile_for_func1_001")
def func1(...)
其他回答
这里已经回答了这个问题:Python内存分析器
基本上你可以这样做(引用自Guppy-PE):
>>> from guppy import hpy; h=hpy()
>>> h.heap()
Partition of a set of 48477 objects. Total size = 3265516 bytes.
Index Count % Size % Cumulative % Kind (class / dict of class)
0 25773 53 1612820 49 1612820 49 str
1 11699 24 483960 15 2096780 64 tuple
2 174 0 241584 7 2338364 72 dict of module
3 3478 7 222592 7 2560956 78 types.CodeType
4 3296 7 184576 6 2745532 84 function
5 401 1 175112 5 2920644 89 dict of class
6 108 0 81888 3 3002532 92 dict (no owner)
7 114 0 79632 2 3082164 94 dict of type
8 117 0 51336 2 3133500 96 type
9 667 1 24012 1 3157512 97 __builtin__.wrapper_descriptor
<76 more rows. Type e.g. '_.more' to view.>
>>> h.iso(1,[],{})
Partition of a set of 3 objects. Total size = 176 bytes.
Index Count % Size % Cumulative % Kind (class / dict of class)
0 1 33 136 77 136 77 dict (no owner)
1 1 33 28 16 164 93 list
2 1 33 12 7 176 100 int
>>> x=[]
>>> h.iso(x).sp
0: h.Root.i0_modules['__main__'].__dict__['x']
>>>
也许它有帮助: <看到额外的>
pip install gprof2dot
sudo apt-get install graphviz
gprof2dot -f pstats profile_for_func1_001 | dot -Tpng -o profile.png
def profileit(name):
"""
@profileit("profile_for_func1_001")
"""
def inner(func):
def wrapper(*args, **kwargs):
prof = cProfile.Profile()
retval = prof.runcall(func, *args, **kwargs)
# Note use of name from outer scope
prof.dump_stats(name)
return retval
return wrapper
return inner
@profileit("profile_for_func1_001")
def func1(...)
披露:
仅适用于Linux 报告当前进程作为一个整体使用的内存,而不是其中的各个函数
但它的优点在于简单:
import resource
def using(point=""):
usage=resource.getrusage(resource.RUSAGE_SELF)
return '''%s: usertime=%s systime=%s mem=%s mb
'''%(point,usage[0],usage[1],
usage[2]/1024.0 )
只要插入using("Label")你想看到发生了什么。例如
print(using("before"))
wrk = ["wasting mem"] * 1000000
print(using("after"))
>>> before: usertime=2.117053 systime=1.703466 mem=53.97265625 mb
>>> after: usertime=2.12023 systime=1.70708 mem=60.8828125 mb
由于公认的答案和第二高的投票答案,在我看来,有一些问题,我想提供一个更多的答案,这是密切基于Ihor B。在回答中做了一些小而重要的修改。
这个解决方案允许您通过使用profile函数包装函数调用并调用它,或者通过使用@profile装饰器装饰函数/方法来运行分析。
当您希望在不破坏源代码的情况下分析某些第三方代码时,第一种技术非常有用,而当您不介意修改想要分析的函数/方法的源代码时,第二种技术稍微“干净”一些,效果更好。
我还修改了输出,以便获得RSS、VMS和共享内存。我不太关心“之前”和“之后”的值,但只关心delta,所以我删除了那些(如果你是比较Ihor B。的回答)。
分析代码
# profile.py
import time
import os
import psutil
import inspect
def elapsed_since(start):
#return time.strftime("%H:%M:%S", time.gmtime(time.time() - start))
elapsed = time.time() - start
if elapsed < 1:
return str(round(elapsed*1000,2)) + "ms"
if elapsed < 60:
return str(round(elapsed, 2)) + "s"
if elapsed < 3600:
return str(round(elapsed/60, 2)) + "min"
else:
return str(round(elapsed / 3600, 2)) + "hrs"
def get_process_memory():
process = psutil.Process(os.getpid())
mi = process.memory_info()
return mi.rss, mi.vms, mi.shared
def format_bytes(bytes):
if abs(bytes) < 1000:
return str(bytes)+"B"
elif abs(bytes) < 1e6:
return str(round(bytes/1e3,2)) + "kB"
elif abs(bytes) < 1e9:
return str(round(bytes / 1e6, 2)) + "MB"
else:
return str(round(bytes / 1e9, 2)) + "GB"
def profile(func, *args, **kwargs):
def wrapper(*args, **kwargs):
rss_before, vms_before, shared_before = get_process_memory()
start = time.time()
result = func(*args, **kwargs)
elapsed_time = elapsed_since(start)
rss_after, vms_after, shared_after = get_process_memory()
print("Profiling: {:>20} RSS: {:>8} | VMS: {:>8} | SHR {"
":>8} | time: {:>8}"
.format("<" + func.__name__ + ">",
format_bytes(rss_after - rss_before),
format_bytes(vms_after - vms_before),
format_bytes(shared_after - shared_before),
elapsed_time))
return result
if inspect.isfunction(func):
return wrapper
elif inspect.ismethod(func):
return wrapper(*args,**kwargs)
示例用法,假设上面的代码保存为profile.py:
from profile import profile
from time import sleep
from sklearn import datasets # Just an example of 3rd party function call
# Method 1
run_profiling = profile(datasets.load_digits)
data = run_profiling()
# Method 2
@profile
def my_function():
# do some stuff
a_list = []
for i in range(1,100000):
a_list.append(i)
return a_list
res = my_function()
这将导致类似于下面的输出:
Profiling: <load_digits> RSS: 5.07MB | VMS: 4.91MB | SHR 73.73kB | time: 89.99ms
Profiling: <my_function> RSS: 1.06MB | VMS: 1.35MB | SHR 0B | time: 8.43ms
最后有几点重要的说明:
Keep in mind, this method of profiling is only going to be approximate, since lots of other stuff might be happening on the machine. Due to garbage collection and other factors, the deltas might even be zero. For some unknown reason, very short function calls (e.g. 1 or 2 ms) show up with zero memory usage. I suspect this is some limitation of the hardware/OS (tested on basic laptop with Linux) on how often memory statistics are updated. To keep the examples simple, I didn't use any function arguments, but they should work as one would expect, i.e. profile(my_function, arg) to profile my_function(arg)
下面是一个简单的函数装饰器,它可以跟踪函数调用之前,函数调用之后进程消耗了多少内存,以及有什么区别:
import time
import os
import psutil
def elapsed_since(start):
return time.strftime("%H:%M:%S", time.gmtime(time.time() - start))
def get_process_memory():
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
return mem_info.rss
def profile(func):
def wrapper(*args, **kwargs):
mem_before = get_process_memory()
start = time.time()
result = func(*args, **kwargs)
elapsed_time = elapsed_since(start)
mem_after = get_process_memory()
print("{}: memory before: {:,}, after: {:,}, consumed: {:,}; exec time: {}".format(
func.__name__,
mem_before, mem_after, mem_after - mem_before,
elapsed_time))
return result
return wrapper
这是我的博客,上面描述了所有的细节。(归档链接)