如何在整数列表中找到重复项并创建重复项的另一个列表?


当前回答

一句话解决方案:

set([i for i in list if sum([1 for a in list if a == i]) > 1])

其他回答

我想在列表中找到重复项最有效的方法是:

from collections import Counter

def duplicates(values):
    dups = Counter(values) - Counter(set(values))
    return list(dups.keys())

print(duplicates([1,2,3,6,5,2]))

它对所有元素使用一次Counter,然后对所有唯一元素使用一次Counter。用第二个减去第一个,只剩下重复的部分。

在Python中,只需一次迭代就可以找到被愚弄的人,这是一个非常简单快速的方法:

testList = ['red', 'blue', 'red', 'green', 'blue', 'blue']

testListDict = {}

for item in testList:
  try:
    testListDict[item] += 1
  except:
    testListDict[item] = 1

print testListDict

输出内容如下:

>>> print testListDict
{'blue': 3, 'green': 1, 'red': 2}

这和更多在我的博客http://www.howtoprogramwithpython.com

集合。Counter是python 2.7中的新功能:


Python 2.5.4 (r254:67916, May 31 2010, 15:03:39) 
[GCC 4.1.2 20080704 (Red Hat 4.1.2-46)] on linux2
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print [x for x, y in collections.Counter(a).items() if y > 1]
Type "help", "copyright", "credits" or "license" for more information.
  File "", line 1, in 
AttributeError: 'module' object has no attribute 'Counter'
>>> 

在早期版本中,你可以使用传统的字典:

a = [1,2,3,2,1,5,6,5,5,5]
d = {}
for elem in a:
    if elem in d:
        d[elem] += 1
    else:
        d[elem] = 1

print [x for x, y in d.items() if y > 1]

不需要转换为列表,可能最简单的方法是如下所示。 在面试中,当他们要求不要使用集合时,这可能会很有用

a=[1,2,3,3,3]
dup=[]
for each in a:
  if each not in dup:
    dup.append(each)
print(dup)

======= else获取唯一值和重复值的2个单独列表

a=[1,2,3,3,3]
uniques=[]
dups=[]

for each in a:
  if each not in uniques:
    uniques.append(each)
  else:
    dups.append(each)
print("Unique values are below:")
print(uniques)
print("Duplicate values are below:")
print(dups)

你不需要计数,只需要该物品之前是否被看到过。把这个答案用在这个问题上:

def list_duplicates(seq):
  seen = set()
  seen_add = seen.add
  # adds all elements it doesn't know yet to seen and all other to seen_twice
  seen_twice = set( x for x in seq if x in seen or seen_add(x) )
  # turn the set into a list (as requested)
  return list( seen_twice )

a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]

以防速度很重要,这里有一些时间安排:

# file: test.py
import collections

def thg435(l):
    return [x for x, y in collections.Counter(l).items() if y > 1]

def moooeeeep(l):
    seen = set()
    seen_add = seen.add
    # adds all elements it doesn't know yet to seen and all other to seen_twice
    seen_twice = set( x for x in l if x in seen or seen_add(x) )
    # turn the set into a list (as requested)
    return list( seen_twice )

def RiteshKumar(l):
    return list(set([x for x in l if l.count(x) > 1]))

def JohnLaRooy(L):
    seen = set()
    seen2 = set()
    seen_add = seen.add
    seen2_add = seen2.add
    for item in L:
        if item in seen:
            seen2_add(item)
        else:
            seen_add(item)
    return list(seen2)

l = [1,2,3,2,1,5,6,5,5,5]*100

以下是结果:(做得好@JohnLaRooy!)

$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop

有趣的是,除了计时本身,当使用pypy时,排名也略有变化。最有趣的是,基于counter的方法极大地受益于pypy的优化,而我建议的方法缓存方法似乎几乎没有任何效果。

$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop

显然,这种效应与输入数据的“重复性”有关。我设置了l = [random.randrange(1000000) for I in xrange(10000)],得到了这些结果:

$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop