假设我有一个有列a, b和c的数据框架,我想按列b升序排序,按列c降序排序,我该怎么做呢?
当前回答
对于数值数据的大数据帧,使用numpy可以显著提高性能。Lexsort,它使用键序列执行间接排序:
import pandas as pd
import numpy as np
np.random.seed(0)
df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
df1 = pd.concat([df1]*100000)
def pdsort(df1):
return df1.sort_values(['a', 'b'], ascending=[True, False])
def lex(df1):
arr = df1.values
return pd.DataFrame(arr[np.lexsort((-arr[:, 1], arr[:, 0]))])
assert (pdsort(df1).values == lex(df1).values).all()
%timeit pdsort(df1) # 193 ms per loop
%timeit lex(df1) # 143 ms per loop
一个特点是用numpy定义排序顺序。Lexsort颠倒过来:(-'b', 'a')先按系列a排序。我们求b的倒数来表示我们想要这个级数按降序排列。
注意np。lexsort只对数值进行排序,而pd.DataFrame. lexsort只对数值进行排序。Sort_values可用于字符串或数值。使用np。字符串的lexsort将给出:TypeError:错误的操作数类型为一元-:'str'。
其他回答
在0.17.0版本中,sort方法已被弃用,取而代之的是sort_values方法。排序在0.20.0版本中被完全删除。论点(和结果)保持不变:
df.sort_values(['a', 'b'], ascending=[True, False])
你可以使用sort的升序参数:
df.sort(['a', 'b'], ascending=[True, False])
例如:
In [11]: df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
In [12]: df1.sort(['a', 'b'], ascending=[True, False])
Out[12]:
a b
2 1 4
7 1 3
1 1 2
3 1 2
4 3 2
6 4 4
0 4 3
9 4 3
5 4 1
8 4 1
正如@renadeen评论的那样
默认情况下排序不到位!所以你应该把sort方法的结果赋值给一个变量,或者在方法调用中添加inplace=True。
也就是说,如果你想重用df1作为一个排序的数据帧:
df1 = df1.sort(['a', 'b'], ascending=[True, False])
or
df1.sort(['a', 'b'], ascending=[True, False], inplace=True)
从pandas 0.17.0开始,datafframe .sort()已弃用,并将在pandas的未来版本中被删除。按值对数据帧排序的方法是dataframe。sort_values
因此,你问题的答案是
df.sort_values(['b', 'c'], ascending=[True, False], inplace=True)
对于数值数据的大数据帧,使用numpy可以显著提高性能。Lexsort,它使用键序列执行间接排序:
import pandas as pd
import numpy as np
np.random.seed(0)
df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
df1 = pd.concat([df1]*100000)
def pdsort(df1):
return df1.sort_values(['a', 'b'], ascending=[True, False])
def lex(df1):
arr = df1.values
return pd.DataFrame(arr[np.lexsort((-arr[:, 1], arr[:, 0]))])
assert (pdsort(df1).values == lex(df1).values).all()
%timeit pdsort(df1) # 193 ms per loop
%timeit lex(df1) # 143 ms per loop
一个特点是用numpy定义排序顺序。Lexsort颠倒过来:(-'b', 'a')先按系列a排序。我们求b的倒数来表示我们想要这个级数按降序排列。
注意np。lexsort只对数值进行排序,而pd.DataFrame. lexsort只对数值进行排序。Sort_values可用于字符串或数值。使用np。字符串的lexsort将给出:TypeError:错误的操作数类型为一元-:'str'。
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象