是否可以为Java 8并行流指定一个自定义线程池?我到处都找不到。

假设我有一个服务器应用程序,我想使用并行流。但是这个应用程序很大,而且是多线程的,所以我想对它进行划分。我不希望在来自另一个模块的applicationblock任务的一个模块中运行缓慢的任务。

如果我不能为不同的模块使用不同的线程池,这意味着我不能在大多数实际情况下安全地使用并行流。

试试下面的例子。有一些CPU密集型任务在单独的线程中执行。 任务利用并行流。第一个任务中断,因此每一步花费1秒(通过线程睡眠模拟)。问题是其他线程卡住,等待中断的任务完成。这是一个虚构的例子,但是想象一下servlet应用程序和某人向共享fork连接池提交了一个长时间运行的任务。

public class ParallelTest {
    public static void main(String[] args) throws InterruptedException {
        ExecutorService es = Executors.newCachedThreadPool();

        es.execute(() -> runTask(1000)); //incorrect task
        es.execute(() -> runTask(0));
        es.execute(() -> runTask(0));
        es.execute(() -> runTask(0));
        es.execute(() -> runTask(0));
        es.execute(() -> runTask(0));


        es.shutdown();
        es.awaitTermination(60, TimeUnit.SECONDS);
    }

    private static void runTask(int delay) {
        range(1, 1_000_000).parallel().filter(ParallelTest::isPrime).peek(i -> Utils.sleep(delay)).max()
                .ifPresent(max -> System.out.println(Thread.currentThread() + " " + max));
    }

    public static boolean isPrime(long n) {
        return n > 1 && rangeClosed(2, (long) sqrt(n)).noneMatch(divisor -> n % divisor == 0);
    }
}

当前回答

实际上,在特定的fork-join池中执行并行操作是有技巧的。如果您将其作为fork-join池中的任务执行,则它将停留在那里,而不使用公共池。

final int parallelism = 4;
ForkJoinPool forkJoinPool = null;
try {
    forkJoinPool = new ForkJoinPool(parallelism);
    final List<Integer> primes = forkJoinPool.submit(() ->
        // Parallel task here, for example
        IntStream.range(1, 1_000_000).parallel()
                .filter(PrimesPrint::isPrime)
                .boxed().collect(Collectors.toList())
    ).get();
    System.out.println(primes);
} catch (InterruptedException | ExecutionException e) {
    throw new RuntimeException(e);
} finally {
    if (forkJoinPool != null) {
        forkJoinPool.shutdown();
    }
}

这个技巧基于ForkJoinTask。安排在当前任务运行的池中异步执行这个任务,如果适用,或者使用ForkJoinPool.commonPool(),如果不是inForkJoinPool()"

其他回答

我使实用工具方法并行运行任务与参数定义最大线程数。

public static void runParallel(final int maxThreads, Runnable task) throws RuntimeException {
    ForkJoinPool forkJoinPool = null;
    try {
        forkJoinPool = new ForkJoinPool(maxThreads);
        forkJoinPool.submit(task).get();
    } catch (InterruptedException | ExecutionException e) {
        throw new RuntimeException(e);
    } finally {
        if (forkJoinPool != null) {
            forkJoinPool.shutdown();
        }
    }
}

它创建了最大线程数的ForkJoinPool,并在任务完成(或失败)后关闭它。

用法如下:

final int maxThreads = 4;
runParallel(maxThreads, () -> 
    IntStream.range(1, 1_000_000).parallel()
            .filter(PrimesPrint::isPrime)
            .boxed().collect(Collectors.toList()));

去打算盘,很常见。并行流可指定线程数。下面是示例代码:

LongStream.range(4, 1_000_000).parallel(threadNum)...

披露:我是abacus-common的开发者。

我尝试了自定义ForkJoinPool,如下所示来调整池的大小:

private static Set<String> ThreadNameSet = new HashSet<>();
private static Callable<Long> getSum() {
    List<Long> aList = LongStream.rangeClosed(0, 10_000_000).boxed().collect(Collectors.toList());
    return () -> aList.parallelStream()
            .peek((i) -> {
                String threadName = Thread.currentThread().getName();
                ThreadNameSet.add(threadName);
            })
            .reduce(0L, Long::sum);
}

private static void testForkJoinPool() {
    final int parallelism = 10;

    ForkJoinPool forkJoinPool = null;
    Long result = 0L;
    try {
        forkJoinPool = new ForkJoinPool(parallelism);
        result = forkJoinPool.submit(getSum()).get(); //this makes it an overall blocking call

    } catch (InterruptedException | ExecutionException e) {
        e.printStackTrace();
    } finally {
        if (forkJoinPool != null) {
            forkJoinPool.shutdown(); //always remember to shutdown the pool
        }
    }
    out.println(result);
    out.println(ThreadNameSet);
}

下面的输出显示池使用的线程比默认的4个要多。

50000005000000
[ForkJoinPool-1-worker-8, ForkJoinPool-1-worker-9, ForkJoinPool-1-worker-6, ForkJoinPool-1-worker-11, ForkJoinPool-1-worker-10, ForkJoinPool-1-worker-1, ForkJoinPool-1-worker-15, ForkJoinPool-1-worker-13, ForkJoinPool-1-worker-4, ForkJoinPool-1-worker-2]

但实际上有一个奇怪的地方,当我试图使用ThreadPoolExecutor实现相同的结果时,如下所示:

BlockingDeque blockingDeque = new LinkedBlockingDeque(1000);
ThreadPoolExecutor fixedSizePool = new ThreadPoolExecutor(10, 20, 60, TimeUnit.SECONDS, blockingDeque, new MyThreadFactory("my-thread"));

但我失败了。

它只会在一个新的线程中启动并行流,然后其他一切都是一样的,这再次证明并行流将使用ForkJoinPool来启动它的子线程。

如果你不想依赖于实现技巧,总有一种方法可以通过实现将映射和收集语义结合起来的自定义收集器来实现相同的目标……并且你不会局限于ForkJoinPool:

list.stream()
  .collect(parallel(i -> process(i), executor, 4))
  .join()

幸运的是,它已经在Maven Central上完成了: http://github.com/pivovarit/parallel-collectors

免责声明:是我写的,并为此负责。

我们可以使用以下属性更改默认的并行度:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=16

可以设置为使用更多的并行性。