是否可以为Java 8并行流指定一个自定义线程池?我到处都找不到。
假设我有一个服务器应用程序,我想使用并行流。但是这个应用程序很大,而且是多线程的,所以我想对它进行划分。我不希望在来自另一个模块的applicationblock任务的一个模块中运行缓慢的任务。
如果我不能为不同的模块使用不同的线程池,这意味着我不能在大多数实际情况下安全地使用并行流。
试试下面的例子。有一些CPU密集型任务在单独的线程中执行。
任务利用并行流。第一个任务中断,因此每一步花费1秒(通过线程睡眠模拟)。问题是其他线程卡住,等待中断的任务完成。这是一个虚构的例子,但是想象一下servlet应用程序和某人向共享fork连接池提交了一个长时间运行的任务。
public class ParallelTest {
public static void main(String[] args) throws InterruptedException {
ExecutorService es = Executors.newCachedThreadPool();
es.execute(() -> runTask(1000)); //incorrect task
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.shutdown();
es.awaitTermination(60, TimeUnit.SECONDS);
}
private static void runTask(int delay) {
range(1, 1_000_000).parallel().filter(ParallelTest::isPrime).peek(i -> Utils.sleep(delay)).max()
.ifPresent(max -> System.out.println(Thread.currentThread() + " " + max));
}
public static boolean isPrime(long n) {
return n > 1 && rangeClosed(2, (long) sqrt(n)).noneMatch(divisor -> n % divisor == 0);
}
}
实际上,在特定的fork-join池中执行并行操作是有技巧的。如果您将其作为fork-join池中的任务执行,则它将停留在那里,而不使用公共池。
final int parallelism = 4;
ForkJoinPool forkJoinPool = null;
try {
forkJoinPool = new ForkJoinPool(parallelism);
final List<Integer> primes = forkJoinPool.submit(() ->
// Parallel task here, for example
IntStream.range(1, 1_000_000).parallel()
.filter(PrimesPrint::isPrime)
.boxed().collect(Collectors.toList())
).get();
System.out.println(primes);
} catch (InterruptedException | ExecutionException e) {
throw new RuntimeException(e);
} finally {
if (forkJoinPool != null) {
forkJoinPool.shutdown();
}
}
这个技巧基于ForkJoinTask。安排在当前任务运行的池中异步执行这个任务,如果适用,或者使用ForkJoinPool.commonPool(),如果不是inForkJoinPool()"
要测量实际使用的线程数,可以检查Thread.activeCount():
Runnable r = () -> IntStream
.range(-42, +42)
.parallel()
.map(i -> Thread.activeCount())
.max()
.ifPresent(System.out::println);
ForkJoinPool.commonPool().submit(r).join();
new ForkJoinPool(42).submit(r).join();
这可以在4核CPU上产生如下输出:
5 // common pool
23 // custom pool
如果没有.parallel(),它会给出:
3 // common pool
4 // custom pool
实际上,在特定的fork-join池中执行并行操作是有技巧的。如果您将其作为fork-join池中的任务执行,则它将停留在那里,而不使用公共池。
final int parallelism = 4;
ForkJoinPool forkJoinPool = null;
try {
forkJoinPool = new ForkJoinPool(parallelism);
final List<Integer> primes = forkJoinPool.submit(() ->
// Parallel task here, for example
IntStream.range(1, 1_000_000).parallel()
.filter(PrimesPrint::isPrime)
.boxed().collect(Collectors.toList())
).get();
System.out.println(primes);
} catch (InterruptedException | ExecutionException e) {
throw new RuntimeException(e);
} finally {
if (forkJoinPool != null) {
forkJoinPool.shutdown();
}
}
这个技巧基于ForkJoinTask。安排在当前任务运行的池中异步执行这个任务,如果适用,或者使用ForkJoinPool.commonPool(),如果不是inForkJoinPool()"
下面是我如何通过编程方式设置上面提到的最大线程数标志,以及一段代码来验证该参数是否符合要求
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "2");
Set<String> threadNames = Stream.iterate(0, n -> n + 1)
.parallel()
.limit(100000)
.map(i -> Thread.currentThread().getName())
.collect(Collectors.toSet());
System.out.println(threadNames);
// Output -> [ForkJoinPool.commonPool-worker-1, Test worker, ForkJoinPool.commonPool-worker-3]
到目前为止,我使用了这个问题的答案中描述的解决方案。现在,我想出了一个叫做并行流支持的小库:
ForkJoinPool pool = new ForkJoinPool(NR_OF_THREADS);
ParallelIntStreamSupport.range(1, 1_000_000, pool)
.filter(PrimesPrint::isPrime)
.collect(toList())
但是正如@PabloMatiasGomez在评论中指出的那样,并行流的分割机制存在缺陷,它严重依赖于公共池的大小。参见HashSet中的并行流不能并行运行。
我使用这个解决方案只是为了对不同类型的工作有单独的池,但即使我不使用它,我也不能将公共池的大小设置为1。