在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
当前回答
基本上,一个最小的可重复示例(MRE)应该能够让其他人在他们的机器上准确地再现您的问题。
请不要发布数据、代码或控制台输出的图像!
tl;博士
MRE包括以下项目:
演示问题所需的最小数据集再现问题所需的最小可运行代码,可在给定数据集上运行有关所用库、R版本和运行该库的操作系统的所有必要信息,可能是sessionInfo()在随机进程的情况下,一个种子(set by set.seed())使其他人能够复制与您完全相同的结果
有关良好MRE的示例,请参阅帮助页底部有关您正在使用的函数的“示例”部分。只需键入例如help(mean)或short?意味着进入你的R控制台。
提供最小数据集
通常,共享巨大的数据集是不必要的,而且可能会阻碍其他人阅读您的问题。因此,最好使用内置数据集或创建一个类似于原始数据的小“玩具”示例,这实际上是指最小值。如果出于某种原因,您确实需要共享原始数据,那么您应该使用一种方法,例如dput(),允许其他人获得数据的精确副本。
内置数据集
您可以使用内置数据集之一。使用data()可以看到内置数据集的全面列表。每个数据集都有简短的描述,可以获得更多信息,例如:?虹膜,用于R附带的“虹膜”数据集。安装的软件包可能包含其他数据集。
创建示例数据集
初步说明:有时您可能需要特殊格式(例如类),例如因子、日期或时间序列。对于这些,请使用以下函数:as.factor、as.Date、as.xts…例如:
d <- as.Date("2020-12-30")
哪里
class(d)
# [1] "Date"
矢量
x <- rnorm(10) ## random vector normal distributed
x <- runif(10) ## random vector uniformly distributed
x <- sample(1:100, 10) ## 10 random draws out of 1, 2, ..., 100
x <- sample(LETTERS, 10) ## 10 random draws out of built-in latin alphabet
矩阵
m <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[1:4]))
m
# A B C D
# A 1 4 7 10
# B 2 5 8 11
# C 3 6 9 12
数据帧
set.seed(42) ## for sake of reproducibility
n <- 6
dat <- data.frame(id=1:n,
date=seq.Date(as.Date("2020-12-26"), as.Date("2020-12-31"), "day"),
group=rep(LETTERS[1:2], n/2),
age=sample(18:30, n, replace=TRUE),
type=factor(paste("type", 1:n)),
x=rnorm(n))
dat
# id date group age type x
# 1 1 2020-12-26 A 27 type 1 0.0356312
# 2 2 2020-12-27 B 19 type 2 1.3149588
# 3 3 2020-12-28 A 20 type 3 0.9781675
# 4 4 2020-12-29 B 26 type 4 0.8817912
# 5 5 2020-12-30 A 26 type 5 0.4822047
# 6 6 2020-12-31 B 28 type 6 0.9657529
注意:虽然它被广泛使用,但最好不要将数据帧命名为df,因为df()是F分布的密度(即x点处曲线的高度)的R函数,您可能会与它发生冲突。
复制原始数据
如果您有特定的原因,或者数据很难从中构建示例,那么可以提供原始数据的一小部分,最好使用dput。
为什么使用dput()?
dput抛出在控制台上准确再现数据所需的所有信息。您可以简单地复制输出并将其粘贴到问题中。
调用dat(从上面)产生的输出仍然缺少关于变量类和其他特性的信息,如果您在问题中共享它。此外,type列中的空格使我们很难使用它。即使我们开始使用数据,我们也无法正确获取数据的重要特性。
id date group age type x
1 1 2020-12-26 A 27 type 1 0.0356312
2 2 2020-12-27 B 19 type 2 1.3149588
3 3 2020-12-28 A 20 type 3 0.9781675
子集数据
要共享子集,请使用head()、subset()或索引iris[1:4,]。然后将其包装到dput()中,以给其他人一些可以立即放入R中的东西。实例
dput(iris[1:4, ]) # first four rows of the iris data set
要在问题中共享的控制台输出:
structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6), Sepal.Width = c(3.5,
3, 3.2, 3.1), Petal.Length = c(1.4, 1.4, 1.3, 1.5), Petal.Width = c(0.2,
0.2, 0.2, 0.2), Species = structure(c(1L, 1L, 1L, 1L), .Label = c("setosa",
"versicolor", "virginica"), class = "factor")), row.names = c(NA,
4L), class = "data.frame")
使用dput时,您可能还希望只包含相关列,例如dput(mtcars[1:3,c(2,5,6)])
注意:如果数据帧具有多个级别的因子,则dput输出可能会很难处理,因为它仍然会列出所有可能的因子级别,即使它们不在数据的子集中。要解决此问题,可以使用droplevels()函数。注意下面的物种是一个只有一个等级的因素,例如dput(下降等级(虹膜[1:4,]))。dput的另一个警告是,它不适用于键控data.table对象或来自tidyverse的分组tbl_df(class grouped_df)。在这些情况下,您可以在共享之前转换回常规数据帧dput(如.data.frame(my_data))。
生成最小代码
结合最少的数据(见上文),您的代码应该通过简单的复制和粘贴在另一台机器上准确地再现问题。
这应该是容易的部分,但往往不是。您不应该做的事情:
示出了各种数据转换;确保提供的数据已经是正确的格式(当然,除非这是问题所在)复制粘贴在某个地方出现错误的整个脚本。尝试找出导致错误的确切行。通常情况下,你会发现问题出在自己身上。
您应该做什么:
如果使用任何包,请添加使用的包(使用library())在新的R会话中测试运行代码,以确保代码可运行。人们应该能够在控制台中复制粘贴您的数据和代码,并获得与您相同的效果。如果打开连接或创建文件,请添加一些代码以关闭连接或删除文件(使用unlink())如果更改选项,请确保代码中包含一条语句,以将其还原为原始选项。(例如op<-par(mfrow=c(1,2))。。。一些代码。。。par(操作))
提供必要信息
在大多数情况下,只有R版本和操作系统就足够了。当包发生冲突时,提供sessionInfo()的输出确实会有所帮助。当谈到与其他应用程序的连接(无论是通过ODBC还是其他任何方式)时,还应提供这些应用程序的版本号,如果可能,还应包括有关设置的必要信息。
如果您在R Studio中运行R,使用rstudioapi::versionInfo()可以帮助报告您的RStudio版本。
如果您对特定的包有问题,您可能希望通过提供packageVersion(“包的名称”)的输出来提供包版本。
Seed
使用set.seed()可以指定seed1,即特定状态,R的随机数生成器是固定的。这使得随机函数(如sample()、rnorm()、runif()和其他许多函数)可以始终返回相同的结果,例如:
set.seed(42)
rnorm(3)
# [1] 1.3709584 -0.5646982 0.3631284
set.seed(42)
rnorm(3)
# [1] 1.3709584 -0.5646982 0.3631284
1注意:在R>3.6.0和以前的版本之间,set.seed()的输出不同。指定您在随机过程中使用的R版本,如果您在回答旧问题时得到的结果略有不同,请不要感到惊讶。为了在这种情况下获得相同的结果,可以在set.seed()之前使用RNGversion()-函数(例如:RNGversion“3.5.2”)。
其他回答
(这是我如何写一个可复制的例子的建议。我试图让它简短而甜蜜)。
如何编写可复制的示例
如果你提供了一个可重复的例子,你最有可能在R问题上得到很好的帮助。一个可复制的示例允许其他人通过复制和粘贴R代码来重新创建您的问题。
为了使示例具有可复制性,您需要包括四个方面:所需的包、数据、代码和R环境的描述。
包应该在脚本的顶部加载,因此很容易看看示例需要哪些。在电子邮件或堆栈溢出问题中包含数据的最简单方法是使用dput()生成R代码以重新创建它。例如,要在R中重新创建mtcars数据集,我将执行以下步骤:在R中运行dput(mtcars)复制输出在我的可复制脚本中,键入mtcars<-然后粘贴。花一点时间确保您的代码易于其他人使用内容如下:确保使用了空格,变量名称简洁,但是提供有用信息的使用注释指出问题所在尽最大努力删除与问题无关的所有内容。代码越短,越容易理解。在代码的注释中包含sessionInfo()的输出。这总结了您的R环境,并使其易于检查您是否使用了过时的包裹
您可以通过启动一个新的R会话并粘贴脚本来检查是否确实制作了一个可复制的示例。
在将所有代码放入电子邮件之前,请考虑将其放在Gistgithub上。它会给你的代码提供很好的语法高亮显示,你不必担心任何东西会被电子邮件系统破坏。
有时,无论你如何努力,问题真的无法用较小的数据块再现,而且合成数据也不会发生(尽管展示你是如何生成没有再现问题的合成数据集是有用的,因为它排除了一些假设)。
可能需要将数据发布到web某处并提供URL。如果数据不能向公众公开,但可以共享,那么您可以通过电子邮件将其发送给感兴趣的各方(尽管这将减少需要处理的人数)。我实际上还没有看到这样做,因为无法发布数据的人对以任何形式发布数据都很敏感,但在某些情况下,如果数据在某种程度上被充分匿名/加扰/轻微损坏,人们仍然可以发布数据。
如果你不能做到这两个,那么你可能需要聘请一位顾问来解决你的问题。。。
编辑:匿名/加扰的两个有用SO问题:
如何从私有数据创建示例数据集(用无信息的占位符替换变量名称和级别)?给定一组从连续单变量分布中抽取的随机数,找到分布
您可以使用reprex执行此操作。
正如mt1022所指出的,“……生产最小、可重复示例的好包装是tidyverse的“reprex”。”。
根据Tidyverse的说法:
“reprex”的目标是以这样一种方式打包您的问题代码,使其他人可以运行它并感受到您的痛苦。
tidyverse网站上给出了一个示例。
library(reprex)
y <- 1:4
mean(y)
reprex()
我认为这是创建可复制示例的最简单方法。
如果您的数据中有一个或多个因子变量,您希望使用dput(head(mydata))进行复制,请考虑向其添加droplevel,以便最小化数据集中不存在的因子级别不包含在dput输出中,以使示例最小化:
dput(droplevels(head(mydata)))
最初的帖子指的是现已退役的数据营的小提琴演奏服务。它已被重新命名为数据营灯,不能像我的回答所示的那样容易嵌入。
我想知道http://old.r-fiddle.org/链接可能是分享问题的一种非常简单的方式。它接收一个唯一的ID,比如,甚至可以考虑将其嵌入SO中。