在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。

你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?

除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?

如何做出一个伟大的、可重复的例子?


当前回答

要快速创建数据的dput,只需将数据复制到剪贴板,然后在R中运行以下命令:

对于Excel中的数据:

dput(read.table("clipboard", sep="\t", header=TRUE))

对于.txt文件中的数据:

dput(read.table("clipboard", sep="", header=TRUE))

如果需要,可以更改后者中的sep。当然,只有当您的数据在剪贴板中时,这才有效。

其他回答

就我个人而言,我更喜欢“一”行。大致如下:

my.df <- data.frame(col1 = sample(c(1,2), 10, replace = TRUE),
        col2 = as.factor(sample(10)), col3 = letters[1:10],
        col4 = sample(c(TRUE, FALSE), 10, replace = TRUE))
my.list <- list(list1 = my.df, list2 = my.df[3], list3 = letters)

数据结构应该模仿作者问题的想法,而不是准确的逐字结构。当变量不覆盖我自己的变量或函数(如df)时,我真的很感激。

或者,你可以切几个角,指向一个预先存在的数据集,比如:

library(vegan)
data(varespec)
ord <- metaMDS(varespec)

不要忘记提及您可能使用的任何特殊软件包。

如果你想在更大的物体上演示一些东西,你可以尝试

my.df2 <- data.frame(a = sample(10e6), b = sample(letters, 10e6, replace = TRUE))

如果通过光栅包处理空间数据,则可以生成一些随机数据。在包装小插曲中可以找到很多例子,但这里有一个小亮点。

library(raster)
r1 <- r2 <- r3 <- raster(nrow=10, ncol=10)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))
s <- stack(r1, r2, r3)

如果您需要一些在sp中实现的空间对象,可以通过“空间”包中的外部文件(如ESRI shapefile)获取一些数据集(请参见任务视图中的空间视图)。

library(rgdal)
ogrDrivers()
dsn <- system.file("vectors", package = "rgdal")[1]
ogrListLayers(dsn)
ogrInfo(dsn=dsn, layer="cities")
cities <- readOGR(dsn=dsn, layer="cities")

R-help邮件列表有一个发布指南,包括提问和回答问题,包括生成数据的示例:

示例:有时提供一个小例子实际上可以运行。例如:如果我有如下矩阵x:

  > x <- matrix(1:8, nrow=4, ncol=2,
                dimnames=list(c("A","B","C","D"), c("x","y"))
  > x
    x y
  A 1 5
  B 2 6
  C 3 7
  D 4 8
  >

如何将其转换为数据帧具有8行和3列“row”、“col”和“value”,它们具有维度名称为“row”和“col”的值,如下所示:

  > x.df
     row col value
  1    A   x      1

...(答案可能是:

  > x.df <- reshape(data.frame(row=rownames(x), x), direction="long",
                    varying=list(colnames(x)), times=colnames(x),
                    v.names="value", timevar="col", idvar="row")

)

“小”这个词特别重要。您应该以最小的可重复示例为目标,这意味着数据和代码应该尽可能简单地解释问题。

编辑:漂亮的代码比难看的代码更容易阅读。使用样式指南。

最初的帖子指的是现已退役的数据营的小提琴演奏服务。它已被重新命名为数据营灯,不能像我的回答所示的那样容易嵌入。

我想知道http://old.r-fiddle.org/链接可能是分享问题的一种非常简单的方式。它接收一个唯一的ID,比如,甚至可以考虑将其嵌入SO中。

从R.2.14开始(我猜),您可以将数据文本表示直接输入read.table:

 df <- read.table(header=TRUE, 
  text="Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
") 

我正在开发wakefield包,以解决快速共享可复制数据的需求,有时dput对较小的数据集很好,但我们处理的许多问题要大得多,通过dput共享如此大的数据集是不切实际的。

关于:

wakefield允许用户共享最少的代码来再现数据。用户设置n(行数)并指定任意数量的预设变量函数(目前有70个),这些函数模拟真实的if数据(如性别、年龄、收入等)

安装:

目前(2015年6月11日),wakefield是一个GitHub包,但在编写单元测试后,最终将转到CRAN。要快速安装,请使用:

if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/wakefield")

例子:

下面是一个示例:

r_data_frame(
    n = 500,
    id,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died
)

这将产生:

    ID  Race Age    Sex     Hour  IQ Height  Died
1  001 White  33   Male 00:00:00 104     74  TRUE
2  002 White  24   Male 00:00:00  78     69 FALSE
3  003 Asian  34 Female 00:00:00 113     66  TRUE
4  004 White  22   Male 00:00:00 124     73  TRUE
5  005 White  25 Female 00:00:00  95     72  TRUE
6  006 White  26 Female 00:00:00 104     69  TRUE
7  007 Black  30 Female 00:00:00 111     71 FALSE
8  008 Black  29 Female 00:00:00 100     64  TRUE
9  009 Asian  25   Male 00:30:00 106     70 FALSE
10 010 White  27   Male 00:30:00 121     68 FALSE
.. ...   ... ...    ...      ... ...    ...   ...