在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
在与同事讨论绩效、教学、发送错误报告或搜索邮件列表和Stack Overflow上的指导时,经常会询问一个可重复的示例,并且总是很有用。
你有什么建议来创建一个优秀的例子?如何以文本格式粘贴r中的数据结构?您还应包括哪些其他信息?
除了使用dput()、dump()或structure()之外,还有其他技巧吗?什么时候应该包含library()或require()语句?除了c、df、data等之外,应该避免哪些保留字。?
如何做出一个伟大的、可重复的例子?
当前回答
您可以使用reprex执行此操作。
正如mt1022所指出的,“……生产最小、可重复示例的好包装是tidyverse的“reprex”。”。
根据Tidyverse的说法:
“reprex”的目标是以这样一种方式打包您的问题代码,使其他人可以运行它并感受到您的痛苦。
tidyverse网站上给出了一个示例。
library(reprex)
y <- 1:4
mean(y)
reprex()
我认为这是创建可复制示例的最简单方法。
其他回答
这是一个很好的指南。
最重要的一点是:制作一小段代码,我们可以运行它来了解问题所在。一个有用的函数是dput(),但是如果您有非常大的数据,那么您可能需要制作一个小样本数据集,或者只使用前10行左右。
编辑:
此外,确保您确定了问题所在。示例不应该是一个完整的R脚本,其中包含“在第200行出现错误”。如果您使用R(我爱浏览器())和Google中的调试工具,那么您应该能够真正确定问题所在,并重现一个同样错误的小例子。
如果您有一个大数据集,无法使用dput()轻松放入脚本,请将数据发布到pastebin并使用read.table加载它们:
d <- read.table("http://pastebin.com/raw.php?i=m1ZJuKLH")
灵感来自Henrik。
就我个人而言,我更喜欢“一”行。大致如下:
my.df <- data.frame(col1 = sample(c(1,2), 10, replace = TRUE),
col2 = as.factor(sample(10)), col3 = letters[1:10],
col4 = sample(c(TRUE, FALSE), 10, replace = TRUE))
my.list <- list(list1 = my.df, list2 = my.df[3], list3 = letters)
数据结构应该模仿作者问题的想法,而不是准确的逐字结构。当变量不覆盖我自己的变量或函数(如df)时,我真的很感激。
或者,你可以切几个角,指向一个预先存在的数据集,比如:
library(vegan)
data(varespec)
ord <- metaMDS(varespec)
不要忘记提及您可能使用的任何特殊软件包。
如果你想在更大的物体上演示一些东西,你可以尝试
my.df2 <- data.frame(a = sample(10e6), b = sample(letters, 10e6, replace = TRUE))
如果通过光栅包处理空间数据,则可以生成一些随机数据。在包装小插曲中可以找到很多例子,但这里有一个小亮点。
library(raster)
r1 <- r2 <- r3 <- raster(nrow=10, ncol=10)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))
s <- stack(r1, r2, r3)
如果您需要一些在sp中实现的空间对象,可以通过“空间”包中的外部文件(如ESRI shapefile)获取一些数据集(请参见任务视图中的空间视图)。
library(rgdal)
ogrDrivers()
dsn <- system.file("vectors", package = "rgdal")[1]
ogrListLayers(dsn)
ogrInfo(dsn=dsn, layer="cities")
cities <- readOGR(dsn=dsn, layer="cities")
请不要像这样粘贴控制台输出:
If I have a matrix x as follows:
> x <- matrix(1:8, nrow=4, ncol=2,
dimnames=list(c("A","B","C","D"), c("x","y")))
> x
x y
A 1 5
B 2 6
C 3 7
D 4 8
>
How can I turn it into a dataframe with 8 rows, and three
columns named `row`, `col`, and `value`, which have the
dimension names as the values of `row` and `col`, like this:
> x.df
row col value
1 A x 1
...
(To which the answer might be:
> x.df <- reshape(data.frame(row=rownames(x), x), direction="long",
+ varying=list(colnames(x)), times=colnames(x),
+ v.names="value", timevar="col", idvar="row")
)
我们不能直接复制粘贴它。
要使问题和答案正确再现,请在发布前删除+&>,并在输出和评论中添加#,如下所示:
#If I have a matrix x as follows:
x <- matrix(1:8, nrow=4, ncol=2,
dimnames=list(c("A","B","C","D"), c("x","y")))
x
# x y
#A 1 5
#B 2 6
#C 3 7
#D 4 8
# How can I turn it into a dataframe with 8 rows, and three
# columns named `row`, `col`, and `value`, which have the
# dimension names as the values of `row` and `col`, like this:
#x.df
# row col value
#1 A x 1
#...
#To which the answer might be:
x.df <- reshape(data.frame(row=rownames(x), x), direction="long",
varying=list(colnames(x)), times=colnames(x),
v.names="value", timevar="col", idvar="row")
还有一件事,如果您使用了某个包中的任何函数,请提及该库。
到目前为止,对于再现性部分,答案显然很好。这只是为了澄清,一个可复制的例子不能也不应该是问题的唯一组成部分。别忘了解释你希望它看起来是什么样子,以及你的问题的轮廓,而不仅仅是你迄今为止试图达到的目的。代码不够;你也需要语言。
这里有一个可重复的例子来说明应该避免做什么(从一个真实的例子中得出,为了保护无辜者而改变了名字):
以下是示例数据和我遇到问题的部分函数。
code
code
code
code
code (40 or so lines of it)
我怎样才能做到这一点?