如何裁剪图像,就像我以前在PIL中所做的那样,使用OpenCV。

PIL工作示例

im = Image.open('0.png').convert('L')
im = im.crop((1, 1, 98, 33))
im.save('_0.png')

但是我怎么在OpenCV上做呢?

这就是我所尝试的:

im = cv.imread('0.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, im_bw) = cv.threshold(im, 128, 255, cv.THRESH_OTSU)
im = cv.getRectSubPix(im_bw, (98, 33), (1, 1))
cv.imshow('Img', im)
cv.waitKey(0)

但这并不奏效。

我想我错误地使用了getRectSubPix。如果是这样,请解释我如何正确使用这个功能。


当前回答

为了让你更容易,这里是我使用的代码:

    top=514
    right=430
    height= 40
    width=100
    croped_image = image[top : (top + height) , right: (right + width)]
    plt.imshow(croped_image, cmap="gray")
    plt.show()

其他回答

注意,图像切片不是创建裁剪图像的副本,而是创建一个指向roi的指针。如果加载这么多图像,用切片裁剪图像的相关部分,然后追加到一个列表中,这可能是巨大的内存浪费。

假设你加载N张图片,每张图片为>1MP,你只需要左上角100x100的区域。

切片:

X = []
for i in range(N):
    im = imread('image_i')
    X.append(im[0:100,0:100]) # This will keep all N images in the memory. 
                              # Because they are still used.

或者,你可以通过.copy()复制相关部分,这样垃圾收集器就会删除im。

X = []
for i in range(N):
    im = imread('image_i')
    X.append(im[0:100,0:100].copy()) # This will keep only the crops in the memory. 
                                     # im's will be deleted by gc.

在发现这一点后,我意识到user1270710的一个评论提到了这一点,但我花了很长时间才发现(即调试等)。所以,我认为值得一提。

或者,你可以使用tensorflow进行裁剪,使用openCV从图像中生成数组。

import cv2
img = cv2.imread('YOURIMAGE.png')

img是一个(imageheight, imagewidth, 3)形状数组。用tensorflow裁剪数组:

import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
    img, offset_height, offset_width, target_height, target_width
)

用tf重新组装图像。Keras,所以我们可以看看它是否有效:

tf.keras.preprocessing.image.array_to_img(
    x, data_format=None, scale=True, dtype=None
)

这将在笔记本中打印出图片(在谷歌Colab中测试)。


整个代码放在一起:

import cv2
img = cv2.imread('YOURIMAGE.png')

import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
    img, offset_height, offset_width, target_height, target_width
)

tf.keras.preprocessing.image.array_to_img(
    x, data_format=None, scale=True, dtype=None
)

这很简单。使用numpy切片。

import cv2
img = cv2.imread("lenna.png")
crop_img = img[y:y+h, x:x+w]
cv2.imshow("cropped", crop_img)
cv2.waitKey(0)

我有这个问题,并在这里找到了另一个答案:感兴趣的复制区域

如果我们把(0,0)看作图像的左上角,叫做im,从左到右是x方向,从上到下是y方向。我们有(x1,y1)作为图像中一个矩形区域的左上角顶点(x2,y2)作为右下角顶点,那么:

roi = im[y1:y2, x1:x2]

这里有一个关于numpy数组索引和切片的综合资源,它可以告诉你更多关于裁剪图像部分的事情。图像将在opencv2中存储为numpy数组。

:)

下面是一些更健壮的收割代码(有点像matlab)

def imcrop(img, bbox): 
    x1,y1,x2,y2 = bbox
    if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]:
        img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2)
    return img[y1:y2, x1:x2, :]

def pad_img_to_fit_bbox(img, x1, x2, y1, y2):
    img = np.pad(img, ((np.abs(np.minimum(0, y1)), np.maximum(y2 - img.shape[0], 0)),
               (np.abs(np.minimum(0, x1)), np.maximum(x2 - img.shape[1], 0)), (0,0)), mode="constant")
    y1 += np.abs(np.minimum(0, y1))
    y2 += np.abs(np.minimum(0, y1))
    x1 += np.abs(np.minimum(0, x1))
    x2 += np.abs(np.minimum(0, x1))
    return img, x1, x2, y1, y2