我花了太长时间研究如何在Matplotlib中让两个子图共享相同的y轴,并在两者之间共享一个颜色条。

发生的事情是,当我在subplot1或subplot2中调用colorbar()函数时,它会自动缩放图形,以便颜色条加上图形将适合'subplot'边界框,导致两个并排的图形具有两个非常不同的大小。

为了解决这个问题,我试着创建了第三个子图,然后我把它黑了,只渲染一个颜色条。 唯一的问题是,现在两个地块的高度和宽度不均匀,我不知道如何让它看起来还好。

这是我的代码:

from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter

# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2)) 
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))

coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
    for j in range(len(coords)):
        if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
            g1out[i][j]=0
            g2out[i][j]=0

fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)

# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)

# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)

# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)

plt.show()

当前回答

abevieiramota使用坐标轴列表的解决方案非常有效,直到你只使用一行图像,正如评论中指出的那样。使用一个合理的长宽比来显示图像大小是有帮助的,但还远远不够完美。例如:

import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
    im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)

fig.colorbar(im, ax=axes.ravel().tolist())

plt.show()

colorbar函数提供了收缩参数,这是一个颜色条轴大小的缩放因子。这确实需要一些手工试验和错误。例如:

fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)

其他回答

只需将颜色条放在它自己的轴上,并使用subplots_adjust为它腾出空间。

举个简单的例子:

import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
    im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)

fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)

plt.show()

请注意,即使值的范围是由vmin和vmax设置的,颜色范围也将由最后绘制的图像(产生im的图像)设置。例如,如果另一个图具有更高的最大值,则比im的最大值更高的点将以统一的颜色显示。

使用make_axes甚至更简单,并且可以得到更好的结果。它还提供了自定义颜色条位置的可能性。 还要注意共享x轴和y轴的子图选项。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
    im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)

cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)

plt.show()

这个主题已经被很好地涵盖了,但我仍然想提出另一种略有不同的哲学方法。

它的设置有点复杂,但它允许(在我看来)更多的灵活性。例如,我们可以处理每个子图/色条的比例:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec

# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3

# Make a new figure
fig = plt.figure(constrained_layout=True)

# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)

# Fill your figure with desired plots
axes = []
for i in range(nrow):
    for j in range(ncol):
        axes.append(fig.add_subplot(gs[i, j]))
        im = axes[-1].pcolormesh(np.random.random((10,10)))

# Shared colorbar    
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])

plt.show()

I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.

如果我能以更好的方式定位颜色条就好了……(可能有更好的方法来做到这一点,但至少它应该不会太难遵循。)

import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

cmap = 'plasma'
ncontours = 5

def get_data(row, col):
    """ get X, Y, Z, and plot number of subplot
        Z > 0 for top row, Z < 0 for bottom row """
    if row == 0:
        x = np.linspace(1, 10, 10, dtype=int)
        X, Y = np.meshgrid(x, x)
        Z = np.sqrt(X**2 + Y**2)
        if col == 0:
            pnum = 1
        else:
            pnum = 2
    elif row == 1:
        x = np.linspace(1, 10, 10, dtype=int)
        X, Y = np.meshgrid(x, x)
        Z = -np.sqrt(X**2 + Y**2)
        if col == 0:
            pnum = 3
        else:
            pnum = 4
    print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
    return X, Y, Z, pnum

fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
    for col in range(ncols):
        X, Y, Z, pnum = get_data(row, col)
        ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
        ax.set_title('row = {}, col = {}'.format(row, col))
        fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
        zz.append(Z)
        axes.append(ax)

## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
    m.set_array([])

# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))

plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column

作为一个无意中发现这条线程的初学者,我想添加一个python for dummies对abevieiramota非常简洁的回答的改编(因为我的水平是,我必须查找“ravel”来了解他们的代码在做什么):

import numpy as np
import matplotlib.pyplot as plt

fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)

axlist = [ax1,ax2,ax3,ax4,ax5,ax6]

first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)

fig.colorbar(first, ax=axlist)

plt.show()

更少的python,更容易让像我这样的新手看到这里到底发生了什么。