可以使用.重塑(-1)将2D数组重新塑造为1D数组。 例如:

>>> a = numpy.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> a.reshape(-1)
array([[1, 2, 3, 4, 5, 6, 7, 8]])

通常,array[-1]表示最后一个元素。 这里-1是什么意思?


当前回答

"在所有其他维度都已指定的情况下,推断出这个维度"

显式地,这将使-1维度成为原始数组的维度积与新指定的dim的维度积的商。如果不是整数,则返回错误。

例如,对于一个形状数组(2,3,5),以下都是等价的:

a = np.random.rand(2, 3, 5)

np.reshape(a, (-1,  2,  5))
np.reshape(a, ( 3, -1,  5))
np.reshape(a, ( 3,  2, -1))

其他回答

长话短说:您设置一些维度,让NumPy设置其余的维度。

(userDim1, userDim2, ..., -1) -->>

(userDim1, userDim1, ..., TOTAL_DIMENSION - (userDim1 + userDim2 + ...))

这仅仅意味着您不确定您可以给出多少行或列,并且您要求numpy建议重新塑造的列或行数。

Numpy提供了-1的最后一个示例 https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

检查下面的代码及其输出,以更好地理解关于(-1):

代码:

import numpy
a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
print("Without reshaping  -> ")
print(a)
b = numpy.reshape(a, -1)
print("HERE We don't know about what number we should give to row/col")
print("Reshaping as (a,-1)")
print(b)
c = numpy.reshape(a, (-1,2))
print("HERE We just know about number of columns")
print("Reshaping as (a,(-1,2))")
print(c)
d = numpy.reshape(a, (2,-1))
print("HERE We just know about number of rows")
print("Reshaping as (a,(2,-1))")
print(d)

输出:

Without reshaping  -> 
[[1 2 3 4]
 [5 6 7 8]]
HERE We don't know about what number we should give to row/col
Reshaping as (a,-1)
[[1 2 3 4 5 6 7 8]]
HERE We just know about number of columns
Reshaping as (a,(-1,2))
[[1 2]
 [3 4]
 [5 6]
 [7 8]]
HERE We just know about number of rows
Reshaping as (a,(2,-1))
[[1 2 3 4]
 [5 6 7 8]]

根据文档:

Newshape: int或int的元组 新形状应与原形状兼容。如果一个 整数,则结果将是该长度的一维数组。一个形状 维度可以是-1。在本例中,该值是从 数组的长度和剩余维度。

numpy.reshape(a,newshape,order{})

查看下面的链接获取更多信息。 https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

对于下面的示例,您提到的输出将结果向量解释为单行。(-1)表示行数为1。 如果

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
b = numpy.reshape(a, -1)

输出:

matrix([[1, 2, 3, 4, 5, 6, 7, 8]])

这可以用另一个例子来更准确地解释:

b = np.arange(10).reshape((-1,1))

输出:(1维柱状阵列)

array([[0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7],
       [8],
       [9]])

or

b = np.arange(10).reshape((1,-1))

输出:(是一个1维行数组)

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

-1代表“未知维度”,可以从另一个维度推断出来。 在这种情况下,如果你这样设置你的矩阵:

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])

像这样修改你的矩阵:

b = numpy.reshape(a, -1)

它将调用一些对矩阵a的默认操作,这将返回一个1-d numpy数组/矩阵。

然而,我不认为使用这样的代码是一个好主意。为什么不试试呢:

b = a.reshape(1, -1)

它会给你同样的结果,而且更容易让读者理解:将b设置为a的另一种形状。对于a,我们不知道它应该有多少列(设置为-1!),但我们想要一个一维数组(设置第一个参数为1!)