可以使用.重塑(-1)将2D数组重新塑造为1D数组。 例如:

>>> a = numpy.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> a.reshape(-1)
array([[1, 2, 3, 4, 5, 6, 7, 8]])

通常,array[-1]表示最后一个元素。 这里-1是什么意思?


当前回答

根据文档:

Newshape: int或int的元组 新形状应与原形状兼容。如果一个 整数,则结果将是该长度的一维数组。一个形状 维度可以是-1。在本例中,该值是从 数组的长度和剩余维度。

其他回答

当你使用-1(或任何其他负整数,我做这个测试kkk)在

b = numpy.reshape(a, -1)

你说的只是麻木的人。重塑自动计算向量的大小(行x列),并将其重新定位到具有该维度的1-D向量。这个命令很有趣,因为它会自动为您执行。如果您想通过输入一个正整数值来将向量重塑为1-D,那么重塑命令只有在正确输入值“rows x columns”时才会起作用。所以输入一个负整数会让这个过程更简单。

提供新形状的满足条件是“新形状应与原形状兼容”

Numpy允许我们给出一个新的形状参数为-1(例如:(2,-1)或(-1,3),但不是(-1,-1))。它只是意味着它是一个未知的维度,我们想让numpy来计算它。numpy将通过查看“数组的长度和剩余维度”并确保它满足上述标准来计算这个值

现在请看示例。

z = np.array([[1, 2, 3, 4],
         [5, 6, 7, 8],
         [9, 10, 11, 12]])
z.shape
(3, 4)

现在尝试用(-1)来重塑。结果新形状为(12,)并且与原始形状(3,4)兼容

z.reshape(-1)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

现在尝试用(- 1,1)来重塑。我们将列设为1,而行设为未知。因此我们得到的结果是,新形状为(12,1)同样与原始形状(3,4)兼容

z.reshape(-1,1)
array([[ 1],
   [ 2],
   [ 3],
   [ 4],
   [ 5],
   [ 6],
   [ 7],
   [ 8],
   [ 9],
   [10],
   [11],
   [12]])

以上与numpy建议/错误消息一致,对单个特性使用重塑(-1,1);即单柱

使用数组重塑数据。如果数据只有单一特征,则重塑(- 1,1)

新形状为(-1,2).行未知,列2。结果是(6,2)

z.reshape(-1, 2)
array([[ 1,  2],
   [ 3,  4],
   [ 5,  6],
   [ 7,  8],
   [ 9, 10],
   [11, 12]])

现在尽量不让专栏人知道。新形状为(1,-1)。也就是说,行为1,列为未知。我们得到的结果是(1,12)

z.reshape(1,-1)
array([[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12]])

以上与numpy建议/错误消息一致,对单个样本使用重塑(1,-1);即单行

使用数组重塑数据。如果包含单个样本,则重塑(1,-1)

新形状(2,-1)。第二行,未知列。结果是(2,6)

z.reshape(2, -1)
array([[ 1,  2,  3,  4,  5,  6],
   [ 7,  8,  9, 10, 11, 12]])

新形状为(3,-1)。第三行,未知列。结果是(3,4)

z.reshape(3, -1)
array([[ 1,  2,  3,  4],
   [ 5,  6,  7,  8],
   [ 9, 10, 11, 12]])

最后,如果我们试图提供两个维度为未知,即新形状为(-1,-1)。它会抛出一个错误

z.reshape(-1, -1)
ValueError: can only specify one unknown dimension

这仅仅意味着您不确定您可以给出多少行或列,并且您要求numpy建议重新塑造的列或行数。

Numpy提供了-1的最后一个示例 https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

检查下面的代码及其输出,以更好地理解关于(-1):

代码:

import numpy
a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
print("Without reshaping  -> ")
print(a)
b = numpy.reshape(a, -1)
print("HERE We don't know about what number we should give to row/col")
print("Reshaping as (a,-1)")
print(b)
c = numpy.reshape(a, (-1,2))
print("HERE We just know about number of columns")
print("Reshaping as (a,(-1,2))")
print(c)
d = numpy.reshape(a, (2,-1))
print("HERE We just know about number of rows")
print("Reshaping as (a,(2,-1))")
print(d)

输出:

Without reshaping  -> 
[[1 2 3 4]
 [5 6 7 8]]
HERE We don't know about what number we should give to row/col
Reshaping as (a,-1)
[[1 2 3 4 5 6 7 8]]
HERE We just know about number of columns
Reshaping as (a,(-1,2))
[[1 2]
 [3 4]
 [5 6]
 [7 8]]
HERE We just know about number of rows
Reshaping as (a,(2,-1))
[[1 2 3 4]
 [5 6 7 8]]

-1代表“未知维度”,可以从另一个维度推断出来。 在这种情况下,如果你这样设置你的矩阵:

a = numpy.matrix([[1, 2, 3, 4], [5, 6, 7, 8]])

像这样修改你的矩阵:

b = numpy.reshape(a, -1)

它将调用一些对矩阵a的默认操作,这将返回一个1-d numpy数组/矩阵。

然而,我不认为使用这样的代码是一个好主意。为什么不试试呢:

b = a.reshape(1, -1)

它会给你同样的结果,而且更容易让读者理解:将b设置为a的另一种形状。对于a,我们不知道它应该有多少列(设置为-1!),但我们想要一个一维数组(设置第一个参数为1!)

直到读了这篇文章,我才明白np. remodeling()是做什么的。

从机械上看,重塑()的功能很清楚。但我们如何解读重塑前后的数据呢?

我所缺少的是:

当我们训练机器学习模型时,数组的嵌套层具有精确定义的含义。

这意味着,在重塑操作有任何意义之前,必须敏锐地意识到以下两点:

它所操作的数据(重塑输入的样子) 算法/模型期望重塑后的数据是什么样子(重塑后的输出是什么样子)

例如:

外部数组包含观测值/行。内部数组包含列/特性。这导致了两种特殊情况,即我们要么有一个对一个特征的多个观察的数组,要么有一个对多个特征的单一观察。

更高级的例子: 请看这个stackoverflow问题


编辑:增加了更详细的例子,见下文。

场景

我们有以下三组/份:

(图中为1组)

所有东西都被平化了,所以emb(3个src节点,emb_size=32)是torch。大小([32])。和,emb的6 tgt节点火炬。大小([6 32])

Goal

我们希望重塑数据,以便每个src对应2个tgt节点,因此我们这样做:

现在,对于第i个src节点,我们有:

source_embs[我:] 对应的target_embs[i,:,:] 这就是关键所在:数据现在被整齐地组织起来了,如果没有重塑,我们就不能做这个简单的索引。

细节

查看target_embs的形状:

before reshaping, shape is [6,32] we start from rightmost dim, dim1=32, it isn't changed in the reshape, so ignore we view shape as [6,*], and now the rightmost dim is dim0=6, almost like ignore dim1, and view it as [6] When we reshape [6] into [3,2], we always look at the rightmost dim first, so we take 2 elements, then change row, then 2 element then change row and so on As prior knowledge, we know [6,*] corresponds to [src1_tgt1, src1_tgt2, src2_tgt1, src2_tgt2, src3_tgt1, src3_tgt2] (this input has to be in this format, or else we need to rearrange the input into this format) hence we know output is formatted correctly: [3,2] will correspond to what we want: [[src1_tgt1,src1_tgt2],[src2_tgt1, src2_tgt2],[src3_tgt1, src3_tgt2]] So reshaping [6,32] into [3,2,32] is now complete what if we want to reshape [6,32] into [4,3,16]? torch can do this, because the index match up, but the result is useless to our purposes what if we want to have [32,2,3] in the end instead of [3,2,32]? Do we just do reshape(input6x32,(32,2,3))? No. Because the data will be scrambled and will be meaningless. What we can do is to get to [3,2,32] first, and then use transpose() into [32,2,3].

摘要(基本使用)

一次重塑两个连续的维度,而且只能重塑两个。这样就更容易理解了。 如果要重塑非连续维度,则在重塑前进行转置 可能还有更高级的用法,但这是我设法理解重塑()正在做什么的唯一方法。