这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

下面是Eratosthenes的一个numpy版本,具有良好的复杂度(低于排序长度为n的数组)和向量化。与@unutbu相比,用46微秒就可以找到100万以下的所有质数。

import numpy as np 
def generate_primes(n):
    is_prime = np.ones(n+1,dtype=bool)
    is_prime[0:2] = False
    for i in range(int(n**0.5)+1):
        if is_prime[i]:
            is_prime[i**2::i]=False
    return np.where(is_prime)[0]

计时:

import time    
for i in range(2,10):
    timer =time.time()
    generate_primes(10**i)
    print('n = 10^',i,' time =', round(time.time()-timer,6))

>> n = 10^ 2  time = 5.6e-05
>> n = 10^ 3  time = 6.4e-05
>> n = 10^ 4  time = 0.000114
>> n = 10^ 5  time = 0.000593
>> n = 10^ 6  time = 0.00467
>> n = 10^ 7  time = 0.177758
>> n = 10^ 8  time = 1.701312
>> n = 10^ 9  time = 19.322478

其他回答

我在这里找到了一个纯Python 2素数生成器,在Willy Good的评论中,它比rwh2_primes快。

def primes235(limit):
yield 2; yield 3; yield 5
if limit < 7: return
modPrms = [7,11,13,17,19,23,29,31]
gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow
ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7]
lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up
lmtsqrt = (int(limit ** 0.5) - 7)
lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel
buf = [True] * (lmtbf + 1)
for i in xrange(lmtsqrt + 1):
    if buf[i]:
        ci = i & 7; p = 30 * (i >> 3) + modPrms[ci]
        s = p * p - 7; p8 = p << 3
        for j in range(8):
            c = s // 30 * 8 + ndxs[s % 30]
            buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1)
            s += p * gaps[ci]; ci += 1
for i in xrange(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras
    if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7])

我的结果:

$ time ./prime_rwh2.py 1e8
5761455 primes found < 1e8

real    0m3.201s
user    0m2.609s
sys     0m0.578s
$ time ./prime_wheel.py 1e8
5761455 primes found < 1e8

real    0m2.710s
user    0m2.469s
sys     0m0.219s

...在我最近的中档笔记本电脑(i5 8265U 1.6GHz)上运行Ubuntu Win 10。

这是一个mod 30轮筛,跳过倍数2,3和5。对我来说,它在2.5e9左右的时候工作得很好,那时我的笔记本电脑开始用完8G内存,需要大量交换。

我喜欢对30取余,因为它只有8个余数不是2 3 5的倍数。这允许使用移位和“&”进行乘法,除法和mod,并应该允许将一个mod 30轮的结果打包到一个字节中。我把威利的代码变成了一个分段的mod 30轮筛,以消除大N的抖动,并张贴在这里。

还有一个更快的Javascript版本,它是分段的,并使用了一个mod 210轮(没有2,3,5或7的倍数)@GordonBGood与一个深入的解释,这对我很有用。

我测试了一些unutbu的功能,我用饥饿的百万数字计算它

获胜者是使用numpy库的函数,

注意:做一个内存利用率测试也很有趣:)

示例代码

完整的代码在我的github存储库

#!/usr/bin/env python

import lib
import timeit
import sys
import math
import datetime

import prettyplotlib as ppl
import numpy as np

import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

primenumbers_gen = [
    'sieveOfEratosthenes',
    'ambi_sieve',
    'ambi_sieve_plain',
    'sundaram3',
    'sieve_wheel_30',
    'primesfrom3to',
    'primesfrom2to',
    'rwh_primes',
    'rwh_primes1',
    'rwh_primes2',
]

def human_format(num):
    # https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
    magnitude = 0
    while abs(num) >= 1000:
        magnitude += 1
        num /= 1000.0
    # add more suffixes if you need them
    return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])


if __name__=='__main__':

    # Vars
    n = 10000000 # number itereration generator
    nbcol = 5 # For decompose prime number generator
    nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
    datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
    config = 'from __main__ import n; import lib'
    primenumbers_gen = {
        'sieveOfEratosthenes': {'color': 'b'},
        'ambi_sieve': {'color': 'b'},
        'ambi_sieve_plain': {'color': 'b'},
         'sundaram3': {'color': 'b'},
        'sieve_wheel_30': {'color': 'b'},
# # #        'primesfrom2to': {'color': 'b'},
        'primesfrom3to': {'color': 'b'},
        # 'rwh_primes': {'color': 'b'},
        # 'rwh_primes1': {'color': 'b'},
        'rwh_primes2': {'color': 'b'},
    }


    # Get n in command line
    if len(sys.argv)>1:
        n = int(sys.argv[1])

    step = int(math.ceil(n / float(nbcol)))
    nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
    set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors

    print datetime.datetime.now().strftime(datetimeformat)
    print("Compute prime number to %(n)s" % locals())
    print("")

    results = dict()
    for pgen in primenumbers_gen:
        results[pgen] = dict()
        benchtimes = list()
        for n in nbs:
            t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
            execute_times = t.repeat(repeat=nb_benchloop,number=1)
            benchtime = np.mean(execute_times)
            benchtimes.append(benchtime)
        results[pgen] = {'benchtimes':np.array(benchtimes)}

fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:

    bench = results[pgen]['benchtimes']
    avgs = np.divide(bench,nbs)
    avg = np.average(bench, weights=nbs)

    # Compute linear regression
    A = np.vstack([nbs, np.ones(len(nbs))]).T
    a, b = np.linalg.lstsq(A, nbs*avgs)[0]

    # Plot
    i += 1
    #label="%(pgen)s" % locals()
    #ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
    label="%(pgen)s avg" % locals()
    ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)

ppl.legend(ax, loc='upper left', ncol=4)

# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]

ax.set_xticklabels(labels)
ax = plt.gca()

plt.show()

对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我发布了我的纯python版本,它比上面发布的食谱版本快不到50%。由于我将整个列表放在内存中,所以需要足够的空间来容纳所有内容,但它的可伸缩性似乎相当好。

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

结果是:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms

我猜最快的方法是在代码中硬编码质数。

因此,为什么不编写一个缓慢的脚本,生成另一个源文件,其中包含所有数字,然后在运行实际程序时导入该源文件呢?

当然,只有当你在编译时知道N的上限时,这才有效,但这是(几乎)所有项目欧拉问题的情况。

 

PS:我可能错了,虽然解析源的硬连接质数比计算它们要慢,但据我所知,Python是从编译的.pyc文件运行的,所以在这种情况下,读取一个包含所有质数到N的二进制数组应该是非常快的。

这个算法很快,但它有一个严重的缺陷:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

您假设numbers.pop()将返回集合中最小的数字,但这根本不能保证。集合是无序的,pop()删除并返回任意元素,因此不能使用它从剩余数字中选择下一个质数。