我有一个这样的数据框架:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df
      a         b         c         d
0  0.418762  0.042369  0.869203  0.972314
1  0.991058  0.510228  0.594784  0.534366
2  0.407472  0.259811  0.396664  0.894202
3  0.726168  0.139531  0.324932  0.906575

我如何得到除b之外的所有列?


当前回答

类似于@Toms的答案,也可以选择除“b”以外的所有列,而不使用.loc,如下所示:

df[df.columns[~df.columns.isin(['b'])]]

其他回答

我认为一个很好的解决方案是使用pandas和regex的函数过滤器(匹配除“b”之外的所有内容):

df.filter(regex="^(?!b$)")

你可以使用df.columns.isin()

df.loc[:, ~df.columns.isin(['b'])]

当你想删除多个列时,简单如下:

df.loc[:, ~df.columns.isin(['col1', 'col2'])]

我测试了速度,发现对我来说。loc解决方案是最快的

df_working_1.loc[:, df_working_1.columns != "market_id"] 
# 7.19 ms ± 201 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
df_working_1.drop("market_id", axis=1)
# 7.65 ms ± 136 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
df_working_1[df_working_1.columns.difference(['market_id'])]
# 7.58 ms ± 116 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
df_working_1[[i for i in list(df_working_1.columns) if i != 'market_id']]
# 7.57 ms ± 144 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

你可以在索引中删除列:

df[df.columns.drop('b')]

or

df.loc[:, df.columns.drop('b')]

这里有另一种方法:

df[[i for i in list(df.columns) if i != '<your column>']]

你只需要传递要显示的所有列,除了你不想要的列。