我需要从给定的列表中选择一些元素,知道它们的索引。假设我想创建一个新列表,其中包含从给定列表[- 2,1,5,3,8,5,6]中索引为1,2,5的元素。我所做的是:
a = [-2,1,5,3,8,5,6]
b = [1,2,5]
c = [ a[i] for i in b]
有什么更好的办法吗?比如c = a[b] ?
我需要从给定的列表中选择一些元素,知道它们的索引。假设我想创建一个新列表,其中包含从给定列表[- 2,1,5,3,8,5,6]中索引为1,2,5的元素。我所做的是:
a = [-2,1,5,3,8,5,6]
b = [1,2,5]
c = [ a[i] for i in b]
有什么更好的办法吗?比如c = a[b] ?
当前回答
列表理解显然是最直接和最容易记住的——除了相当python化!
在任何情况下,在提出的解决方案中,它不是最快的(我已经在Windows上使用Python 3.8.3运行了我的测试):
import timeit
from itertools import compress
import random
from operator import itemgetter
import pandas as pd
__N_TESTS__ = 10_000
vector = [str(x) for x in range(100)]
filter_indeces = sorted(random.sample(range(100), 10))
filter_boolean = random.choices([True, False], k=100)
# Different ways for selecting elements given indeces
# list comprehension
def f1(v, f):
return [v[i] for i in filter_indeces]
# itemgetter
def f2(v, f):
return itemgetter(*f)(v)
# using pandas.Series
# this is immensely slow
def f3(v, f):
return list(pd.Series(v)[f])
# using map and __getitem__
def f4(v, f):
return list(map(v.__getitem__, f))
# using enumerate!
def f5(v, f):
return [x for i, x in enumerate(v) if i in f]
# using numpy array
def f6(v, f):
return list(np.array(v)[f])
print("{:30s}:{:f} secs".format("List comprehension", timeit.timeit(lambda:f1(vector, filter_indeces), number=__N_TESTS__)))
print("{:30s}:{:f} secs".format("Operator.itemgetter", timeit.timeit(lambda:f2(vector, filter_indeces), number=__N_TESTS__)))
print("{:30s}:{:f} secs".format("Using Pandas series", timeit.timeit(lambda:f3(vector, filter_indeces), number=__N_TESTS__)))
print("{:30s}:{:f} secs".format("Using map and __getitem__", timeit.timeit(lambda: f4(vector, filter_indeces), number=__N_TESTS__)))
print("{:30s}:{:f} secs".format("Enumeration (Why anyway?)", timeit.timeit(lambda: f5(vector, filter_indeces), number=__N_TESTS__)))
我的结果是:
列表理解:0.007113秒 操作符。Itemgetter:0.003247秒 使用Pandas系列:2.977286秒 使用map和getitem:0.005029秒 枚举(为什么?):0.135156秒 Numpy:0.157018秒
其他回答
你可以使用operator.itemgetter:
from operator import itemgetter
a = [-2, 1, 5, 3, 8, 5, 6]
b = [1, 2, 5]
print(itemgetter(*b)(a))
# Result:
(1, 5, 5)
或者你可以使用numpy:
import numpy as np
a = np.array([-2, 1, 5, 3, 8, 5, 6])
b = [1, 2, 5]
print(list(a[b]))
# Result:
[1, 5, 5]
但说真的,你现在的解决方案很好。这可能是其中最简洁的一个。
这里有一个更简单的方法:
a = [-2,1,5,3,8,5,6]
b = [1,2,5]
c = [e for i, e in enumerate(a) if i in b]
我的回答没有使用numpy或python集合。
查找元素的一种简单方法如下:
a = [-2, 1, 5, 3, 8, 5, 6]
b = [1, 2, 5]
c = [i for i in a if i in b]
缺点:此方法可能不适用于较大的列表。对于较大的列表,建议使用numpy。
另一个解决方案是通过熊猫系列:
import pandas as pd
a = pd.Series([-2, 1, 5, 3, 8, 5, 6])
b = [1, 2, 5]
c = a[b]
如果你想,你可以把c转换回一个列表:
c = list(c)
选择:
>>> map(a.__getitem__, b)
[1, 5, 5]
>>> import operator
>>> operator.itemgetter(*b)(a)
(1, 5, 5)