np。einsum工作吗?

给定数组A和B,它们的矩阵乘法和转置是使用(A @ B).T计算的,或者等效地,使用:

np.einsum("ij, jk -> ki", A, B)

我发现NumPy: The tricks of The trade (Part II)很有教育意义

我们使用->表示输出数组的顺序。把'ij, i->j'看成左手边(LHS)和右手边(RHS)。LHS上的任何重复标签都将按乘积元素计算,然后求和。通过改变RHS(输出)端上的标签,我们可以定义我们想要相对于输入数组进行处理的轴,即沿着轴0,1和等等进行求和。

import numpy as np

>>> a
array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])
>>> b
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> d = np.einsum('ij, jk->ki', a, b)

注意这里有三个轴,i, j, k, j是重复的(在左边)。I j表示a的行和列j k表示b。

为了计算乘积并对齐j轴,我们需要向a添加一个轴(b将沿第一个轴广播)。

a[i, j, k]
   b[j, k]

>>> c = a[:,:,np.newaxis] * b
>>> c
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 0,  2,  4],
        [ 6,  8, 10],
        [12, 14, 16]],

       [[ 0,  3,  6],
        [ 9, 12, 15],
        [18, 21, 24]]])

右边没有J所以我们对J求和J是3x3x3数组的第二个轴

>>> c = c.sum(1)
>>> c
array([[ 9, 12, 15],
       [18, 24, 30],
       [27, 36, 45]])

最后,右边的下标(按字母顺序)是颠倒的,所以我们转置。

>>> c.T
array([[ 9, 18, 27],
       [12, 24, 36],
       [15, 30, 45]])

>>> np.einsum('ij, jk->ki', a, b)
array([[ 9, 18, 27],
       [12, 24, 36],
       [15, 30, 45]])
>>>

让我们创建两个数组,它们具有不同但兼容的尺寸,以突出它们的相互作用

In [43]: A=np.arange(6).reshape(2,3)
Out[43]: 
array([[0, 1, 2],
       [3, 4, 5]])


In [44]: B=np.arange(12).reshape(3,4)
Out[44]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

你的计算,取(2,3)与(3,4)的乘积的“点”(和)来生成(4,2)数组。i是A的第一个,C的最后一个;k B的最后一个,c的第一个j被求和'消耗'。

In [45]: C=np.einsum('ij,jk->ki',A,B)
Out[45]: 
array([[20, 56],
       [23, 68],
       [26, 80],
       [29, 92]])

这和np。dot(A,B)是一样的。T -它是转置后的最终输出。

要了解更多关于j的内容,请将C下标更改为ijk:

In [46]: np.einsum('ij,jk->ijk',A,B)
Out[46]: 
array([[[ 0,  0,  0,  0],
        [ 4,  5,  6,  7],
        [16, 18, 20, 22]],

       [[ 0,  3,  6,  9],
        [16, 20, 24, 28],
        [40, 45, 50, 55]]])

这也可以用:

A[:,:,None]*B[None,:,:]

也就是说,在a的末尾增加一个k维,在B的前面增加一个i维,得到一个(2,3,4)数组。

0 + 4 + 16 = 20,9 + 28 + 55 = 92,等等;对j和转置求和得到前面的结果:

np.sum(A[:,:,None] * B[None,:,:], axis=1).T

# C[k,i] = sum(j) A[i,j (,k) ] * B[(i,)  j,k]

(注:这个答案是基于我不久前写的一篇关于einsum的简短博客文章。)

einsum是做什么的?

假设我们有两个多维数组A和b。现在让我们假设我们想要…

以特定的方式将A与B相乘,以产生新的产品数组;然后也许 这个新数组沿着特定的轴求和;然后也许 将新数组的坐标轴按特定顺序转置。

比起NumPy函数的组合,比如乘法、求和和转置,einsum很有可能帮助我们更快、更高效地完成这项工作。

einsum是如何工作的?

这里有一个简单(但并非完全无关紧要)的例子。取以下两个数组:

A = np.array([0, 1, 2])

B = np.array([[ 0,  1,  2,  3],
              [ 4,  5,  6,  7],
              [ 8,  9, 10, 11]])

我们将A和B元素相乘,然后沿着新数组的行求和。在“normal”NumPy中,我们可以这样写:

>>> (A[:, np.newaxis] * B).sum(axis=1)
array([ 0, 22, 76])

在这里,A上的索引操作将两个数组的第一个轴对齐,这样乘法运算就可以传播。然后将产品数组的行相加以返回答案。

现在如果我们想用einsum代替,我们可以这样写:

>>> np.einsum('i,ij->i', A, B)
array([ 0, 22, 76])

签名字符串'i,ij->i'是这里的关键,需要一点解释。你可以把它想成两半。在左边(->的左边),我们标记了两个输入数组。在->的右边,我们已经标记了我们最终想要的数组。

接下来的事情是这样的:

A has one axis; we've labelled it i. And B has two axes; we've labelled axis 0 as i and axis 1 as j. By repeating the label i in both input arrays, we are telling einsum that these two axes should be multiplied together. In other words, we're multiplying array A with each column of array B, just like A[:, np.newaxis] * B does. Notice that j does not appear as a label in our desired output; we've just used i (we want to end up with a 1D array). By omitting the label, we're telling einsum to sum along this axis. In other words, we're summing the rows of the products, just like .sum(axis=1) does.

这基本上就是使用einsum所需要知道的全部内容。玩一会儿会有帮助;如果我们在输出中保留两个标签,'i,ij->ij',我们会得到一个2D的乘积数组(与a [:, np。如果我们说没有输出标签,'i,ij->,我们将返回一个单一的数字(与做(a [:, np。* B).sum())。

然而,einsum的伟大之处在于,它并不首先构建一个临时的产品数组;它只是把反应过程中的产物加起来。这可以大大节省内存使用。

一个更大的例子

为了解释点积,这里有两个新数组:

A = array([[1, 1, 1],
           [2, 2, 2],
           [5, 5, 5]])

B = array([[0, 1, 0],
           [1, 1, 0],
           [1, 1, 1]])

我们将用np来计算点积。einsum('ij,jk->ik', A, B).下面的图片显示了A和B的标记以及我们从函数中得到的输出数组:

你可以看到标签j是重复的-这意味着我们将A的行与b的列相乘。此外,标签j不包括在输出中-我们将这些乘积相加。标签i和k是为输出保留的,所以我们得到了一个2D数组。

将这个结果与标签j没有求和的数组进行比较可能会更清楚。下面,在左边你可以看到写入np后的3D数组。einsum('ij,jk->ijk', A, B)(即我们保留了标签j):

求和轴j给出了期望的点积,如右侧所示。

一些练习

为了更好地理解einsum,可以使用下标表示法实现熟悉的NumPy数组操作。任何涉及乘轴和轴的组合都可以使用einsum来编写。

设A和B是两个长度相同的一维数组。例如,A = np.arange(10)和B = np.arange(10)。(5、15)不等。

A的和可以写成: np。einsum(“我- - - >”) 元素的乘法,A * B,可以写成: np。einsum('i,i->i', A, B) 内积或点积,np。内部的(A, B)或np。点(A, B),可以写成: np。einsum('i,i->', A, B) #或直接使用'i,i' 外积,np。外层(A, B),可以写成: np。einsum('i,j->ij', A, B)

对于2D数组C和D,假设轴的长度是兼容的(两者长度相同或其中一个长度为1),这里有一些例子:

C的迹(主对角线的和)np.trace(C)可以写成: np。einsum(“二世”,C) C与D的转置的逐元素乘法,C * D.T,可以写成: np。einsum('ij,ji->ij', C, D) C中的每个元素乘以数组D(得到一个4D数组),C[:,:, None, None] * D,可以写成: np。einsum('ij,kl->ijkl', C, D)


如果您直观地理解numpy.einsum(),那么掌握它的思想是非常容易的。作为一个例子,让我们从涉及矩阵乘法的简单描述开始。


要使用numpy.einsum(),只需将所谓的下标字符串作为参数传递,后面跟着输入数组。

假设你有两个二维数组,A和B,你想做矩阵乘法。所以,你会:

np.einsum("ij, jk -> ik", A, B)

Here the subscript string ij corresponds to array A while the subscript string jk corresponds to array B. Also, the most important thing to note here is that the number of characters in each subscript string must match the dimensions of the array (i.e., two chars for 2D arrays, three chars for 3D arrays, and so on). And if you repeat the chars between subscript strings (j in our case), then that means you want the einsum to happen along those dimensions. Thus, they will be sum-reduced (i.e., that dimension will be gone).

The subscript string after this -> symbol represent the dimensions of our resultant array. If you leave it empty, then everything will be summed and a scalar value is returned as the result. Else the resultant array will have dimensions according to the subscript string. In our example, it'll be ik. This is intuitive because we know that for the matrix multiplication to work, the number of columns in array A has to match the number of rows in array B which is what is happening here (i.e., we encode this knowledge by repeating the char j in the subscript string)


下面是一些例子,简洁地说明了np.einsum()在实现一些常见的张量或nd-array操作时的使用/功能。

输入

# a vector
In [197]: vec
Out[197]: array([0, 1, 2, 3])

# an array
In [198]: A
Out[198]: 
array([[11, 12, 13, 14],
       [21, 22, 23, 24],
       [31, 32, 33, 34],
       [41, 42, 43, 44]])

# another array
In [199]: B
Out[199]: 
array([[1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3],
       [4, 4, 4, 4]])

1)矩阵乘法(类似np。matmul (arr1 arr2))

In [200]: np.einsum("ij, jk -> ik", A, B)
Out[200]: 
array([[130, 130, 130, 130],
       [230, 230, 230, 230],
       [330, 330, 330, 330],
       [430, 430, 430, 430]])

2)沿主对角线提取元素(类似于np.diag(arr))

In [202]: np.einsum("ii -> i", A)
Out[202]: array([11, 22, 33, 44])

3) Hadamard积(即两个数组的元素积)(类似于arr1 * arr2)

In [203]: np.einsum("ij, ij -> ij", A, B)
Out[203]: 
array([[ 11,  12,  13,  14],
       [ 42,  44,  46,  48],
       [ 93,  96,  99, 102],
       [164, 168, 172, 176]])

4)元素平方(类似于np.square(arr)或arr ** 2)

In [210]: np.einsum("ij, ij -> ij", B, B)
Out[210]: 
array([[ 1,  1,  1,  1],
       [ 4,  4,  4,  4],
       [ 9,  9,  9,  9],
       [16, 16, 16, 16]])

5) Trace(即主对角元素的和)(类似于np.trace(arr))

In [217]: np.einsum("ii -> ", A)
Out[217]: 110

6)矩阵转置(类似于np.转置(arr))

In [221]: np.einsum("ij -> ji", A)
Out[221]: 
array([[11, 21, 31, 41],
       [12, 22, 32, 42],
       [13, 23, 33, 43],
       [14, 24, 34, 44]])

7)向量的外积(类似于np。外(vec1 vec2))

In [255]: np.einsum("i, j -> ij", vec, vec)
Out[255]: 
array([[0, 0, 0, 0],
       [0, 1, 2, 3],
       [0, 2, 4, 6],
       [0, 3, 6, 9]])

8)(向量的)内积(类似于np。内部(vec1 vec2))

In [256]: np.einsum("i, i -> ", vec, vec)
Out[256]: 14

9)沿0轴求和(类似于np。sum (arr轴= 0))

In [260]: np.einsum("ij -> j", B)
Out[260]: array([10, 10, 10, 10])

10)沿轴1求和(类似于np。sum (arr轴= 1))

In [261]: np.einsum("ij -> i", B)
Out[261]: array([ 4,  8, 12, 16])

11)批量矩阵乘法

In [287]: BM = np.stack((A, B), axis=0)

In [288]: BM
Out[288]: 
array([[[11, 12, 13, 14],
        [21, 22, 23, 24],
        [31, 32, 33, 34],
        [41, 42, 43, 44]],

       [[ 1,  1,  1,  1],
        [ 2,  2,  2,  2],
        [ 3,  3,  3,  3],
        [ 4,  4,  4,  4]]])

In [289]: BM.shape
Out[289]: (2, 4, 4)

# batch matrix multiply using einsum
In [292]: BMM = np.einsum("bij, bjk -> bik", BM, BM)

In [293]: BMM
Out[293]: 
array([[[1350, 1400, 1450, 1500],
        [2390, 2480, 2570, 2660],
        [3430, 3560, 3690, 3820],
        [4470, 4640, 4810, 4980]],

       [[  10,   10,   10,   10],
        [  20,   20,   20,   20],
        [  30,   30,   30,   30],
        [  40,   40,   40,   40]]])

In [294]: BMM.shape
Out[294]: (2, 4, 4)

12)沿轴2求和(类似于np。sum (arr轴= 2))

In [330]: np.einsum("ijk -> ij", BM)
Out[330]: 
array([[ 50,  90, 130, 170],
       [  4,   8,  12,  16]])

13)对数组中的所有元素求和(类似于np.sum(arr))

In [335]: np.einsum("ijk -> ", BM)
Out[335]: 480

14)多轴求和(即边缘化) (类似于np。Sum (arr, axis=(axis0, axis1, axis2, axis3, axis4, axis6, axis7)))

# 8D array
In [354]: R = np.random.standard_normal((3,5,4,6,8,2,7,9))

# marginalize out axis 5 (i.e. "n" here)
In [363]: esum = np.einsum("ijklmnop -> n", R)

# marginalize out axis 5 (i.e. sum over rest of the axes)
In [364]: nsum = np.sum(R, axis=(0,1,2,3,4,6,7))

In [365]: np.allclose(esum, nsum)
Out[365]: True

15)双点积(类似于np.sum(hadamard-product) cf. 3)

In [772]: A
Out[772]: 
array([[1, 2, 3],
       [4, 2, 2],
       [2, 3, 4]])

In [773]: B
Out[773]: 
array([[1, 4, 7],
       [2, 5, 8],
       [3, 6, 9]])

In [774]: np.einsum("ij, ij -> ", A, B)
Out[774]: 124

16)二维和三维数组乘法

这样的乘法在求解线性方程组(Ax = b)时非常有用,当你想验证结果时。

# inputs
In [115]: A = np.random.rand(3,3)
In [116]: b = np.random.rand(3, 4, 5)

# solve for x
In [117]: x = np.linalg.solve(A, b.reshape(b.shape[0], -1)).reshape(b.shape)

# 2D and 3D array multiplication :)
In [118]: Ax = np.einsum('ij, jkl', A, x)

# indeed the same!
In [119]: np.allclose(Ax, b)
Out[119]: True

相反,如果必须使用np.matmul()进行验证,我们必须做一些重塑操作来实现相同的结果,例如:

# reshape 3D array `x` to 2D, perform matmul
# then reshape the resultant array to 3D
In [123]: Ax_matmul = np.matmul(A, x.reshape(x.shape[0], -1)).reshape(x.shape)

# indeed correct!
In [124]: np.allclose(Ax, Ax_matmul)
Out[124]: True

奖励:阅读更多的数学在这里:爱因斯坦求和和绝对在这里:张量符号


在阅读einsum方程时,我发现能够这样做最有帮助 在心里把它们归结为它们的命令版本。

让我们从下面的陈述开始:

C = np.einsum('bhwi,bhwj->bij', A, B)

首先看标点符号,我们看到箭头前面有两个4个逗号分隔的斑点——bhwi和bhwj, 后面还有一个3个字母的bij。因此,该方程由两个秩4张量输入产生一个秩3张量结果。

现在,让每个blob中的每个字母都是一个范围变量的名称。字母出现在圆点中的位置 是它在这个张量中所覆盖的轴的下标。 因此,生成C的每个元素的命令式求和必须从三个嵌套的for循环开始,每个for循环对应C的每个索引。

for b in range(...):
    for i in range(...):
        for j in range(...):
            # the variables b, i and j index C in the order of their appearance in the equation
            C[b, i, j] = ...

所以,本质上,对于c的每个输出索引都有一个for循环,我们暂时不确定范围。

接下来我们看左边,有没有范围变量没有出现在右边?在我们的例子中,是的,h和w。 为每个这样的变量添加一个内部嵌套的for循环:

for b in range(...):
    for i in range(...):
        for j in range(...):
            C[b, i, j] = 0
            for h in range(...):
                for w in range(...):
                    ...

在最里面的循环中,我们现在已经定义了所有的指标,所以我们可以写出实际的和 翻译完成:

# three nested for-loops that index the elements of C
for b in range(...):
    for i in range(...):
        for j in range(...):

            # prepare to sum
            C[b, i, j] = 0

            # two nested for-loops for the two indexes that don't appear on the right-hand side
            for h in range(...):
                for w in range(...):
                    # Sum! Compare the statement below with the original einsum formula
                    # 'bhwi,bhwj->bij'

                    C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]

如果到目前为止您已经能够遵循代码,那么恭喜您!这就是阅读einsum方程所需要的。请特别注意原始einsum公式如何映射到上面代码片段中的最终求和语句。for循环和范围界限只是无用的,最后的语句是你真正需要理解发生了什么。

为了完整起见,让我们看看如何确定每个范围变量的范围。好吧,每个变量的范围就是它索引的维度的长度。 显然,如果一个变量在一个或多个张量中表示多个维度,那么每个维度的长度必须相等。 下面是上面的完整范围的代码:

# C's shape is determined by the shapes of the inputs
# b indexes both A and B, so its range can come from either A.shape or B.shape
# i indexes only A, so its range can only come from A.shape, the same is true for j and B
assert A.shape[0] == B.shape[0]
assert A.shape[1] == B.shape[1]
assert A.shape[2] == B.shape[2]
C = np.zeros((A.shape[0], A.shape[3], B.shape[3]))
for b in range(A.shape[0]): # b indexes both A and B, or B.shape[0], which must be the same
    for i in range(A.shape[3]):
        for j in range(B.shape[3]):
            # h and w can come from either A or B
            for h in range(A.shape[1]):
                for w in range(A.shape[2]):
                    C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]

我认为最简单的例子是在tensorflow文档中

将方程转换为einsum符号有四个步骤。我们以这个方程为例C[i,k] = sum_j A[i,j] * B[j,k]

首先,我们删除变量名。得到ik = sum_j ij * jk 我们删除sum_j项,因为它是隐式的。得到ik = ij * jk 我们用,替换*。我们得到ik = ij jk 输出在RHS上,用->符号分隔。得到ij jk - >ik

einsum解释器只是反向运行这4个步骤。对结果中缺失的所有指标求和。

下面是文档中的更多示例

# Matrix multiplication
einsum('ij,jk->ik', m0, m1)  # output[i,k] = sum_j m0[i,j] * m1[j, k]

# Dot product
einsum('i,i->', u, v)  # output = sum_i u[i]*v[i]

# Outer product
einsum('i,j->ij', u, v)  # output[i,j] = u[i]*v[j]

# Transpose
einsum('ij->ji', m)  # output[j,i] = m[i,j]

# Trace
einsum('ii', m)  # output[j,i] = trace(m) = sum_i m[i, i]

# Batch matrix multiplication
einsum('aij,ajk->aik', s, t)  # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]

关于np.einsum的另一个观点

这里的大多数答案都是通过例子来解释的,我想我会给出一个额外的观点。

你可以把einsum看成一个广义矩阵求和算子。给定的字符串包含下标,下标是表示轴的标签。我喜欢把它看作你的操作定义。下标提供了两个明显的约束条件:

每个输入数组的轴数, 输入之间的轴大小相等。

让我们以最初的例子为例:np。einsum('ij,jk->ki', A, B)。翻译成A.ndim == 2和B.ndim == 2,和2。to A.shape[1] == B.shape[0]。

稍后您将看到,还有其他限制条件。例如:

输出下标中的标签不能出现多次。 输出下标中的标签必须出现在输入下标中。

当看ij,jk->ki时,你可以把它想象成:

输入数组中的哪些组件将贡献给输出数组中的组件[k, i]。

下标包含输出数组的每个组件的操作的准确定义。

我们将继续使用操作ij,jk->ki,以及A和B的以下定义:

>>> A = np.array([[1,4,1,7], [8,1,2,2], [7,4,3,4]])
>>> A.shape
(3, 4)

>>> B = np.array([[2,5], [0,1], [5,7], [9,2]])
>>> B.shape
(4, 2)

输出Z的形状为(B.shape[1], a .shape[0]),可以简单地按以下方式构造。从Z的空数组开始:

Z = np.zeros((B.shape[1], A.shape[0]))
for i in range(A.shape[0]):
    for j in range(A.shape[1]):
        for k range(B.shape[0]):
           Z[k, i] += A[i, j]*B[j, k] # ki <- ij*jk

np。Einsum是关于在输出数组中积累贡献。每个(A[i,j], B[j,k])对都对每个Z[k, i]分量有贡献。

你可能已经注意到,它看起来非常类似于你计算一般矩阵乘法的方式……


最小的实现

这里是np的一个最小实现。Python中的einsum。这应该有助于理解在引擎盖下面到底发生了什么。

在我们继续进行的过程中,我将继续引用前面的例子。将输入定义为[A, B]。

np。Einsum实际上可以接受两个以上的输入。在下面,我们将关注一般情况:n个输入和n个输入下标。主要目标是找到迭代的定义域,即所有值域的笛卡尔积。

我们不能依赖于手动编写for循环,因为我们不知道会有多少个循环。主要思想是这样的:我们需要找到所有唯一的标签(我将使用key和keys来引用它们),找到相应的数组形状,然后为每个数组创建范围,并使用itertools计算范围的乘积。产品得到了研究领域。

index keys constraints sizes ranges
1 'i' A.shape[0] 3 range(0, 3)
2 'j' A.shape[1] == B.shape[0] 4 range(0, 4)
0 'k' B.shape[1] 2 range(0, 2)

研究的领域是笛卡尔积:范围(0,2)x范围(0,3)x范围(0,4)。

Subscripts processing: >>> expr = 'ij,jk->ki' >>> qry_expr, res_expr = expr.split('->') >>> inputs_expr = qry_expr.split(',') >>> inputs_expr, res_expr (['ij', 'jk'], 'ki') Find the unique keys (labels) in the input subscripts: >>> keys = set([(key, size) for keys, input in zip(inputs_expr, inputs) for key, size in list(zip(keys, input.shape))]) {('i', 3), ('j', 4), ('k', 2)} We should be checking for constraints (as well as in the output subscript)! Using set is a bad idea but it will work for the purpose of this example. Get the associated sizes (used to initialize the output array) and construct the ranges (used to create our domain of iteration): >>> sizes = dict(keys) {'i': 3, 'j': 4, 'k': 2} >>> ranges = [range(size) for _, size in keys] [range(0, 2), range(0, 3), range(0, 4)] We need an list containing the keys (labels): >>> to_key = sizes.keys() ['k', 'i', 'j'] Compute the cartesian product of the ranges >>> domain = product(*ranges) Note: [itertools.product][1] returns an iterator which gets consumed over time. Initialize the output tensor as: >>> res = np.zeros([sizes[key] for key in res_expr]) We will be looping over domain: >>> for indices in domain: ... pass For each iteration, indices will contain the values on each axis. In our example, that would provide i, j, and k as a tuple: (k, i, j). For each input (A and B) we need to determine which component to fetch. That's A[i, j] and B[j, k], yes! However, we don't have variables i, j, and k, literally speaking. We can zip indices with to_key to create a mapping between each key (label) and its current value: >>> vals = dict(zip(to_key, indices)) To get the coordinates for the output array, we use vals and loop over the keys: [vals[key] for key in res_expr]. However, to use these to index the output array, we need to wrap it with tuple and zip to separate the indices along each axis: >>> res_ind = tuple(zip([vals[key] for key in res_expr])) Same for the input indices (although there can be several): >>> inputs_ind = [tuple(zip([vals[key] for key in expr])) for expr in inputs_expr] We will use a itertools.reduce to compute the product of all contributing components: >>> def reduce_mult(L): ... return reduce(lambda x, y: x*y, L) Overall the loop over the domain looks like: >>> for indices in domain: ... vals = {k: v for v, k in zip(indices, to_key)} ... res_ind = tuple(zip([vals[key] for key in res_expr])) ... inputs_ind = [tuple(zip([vals[key] for key in expr])) ... for expr in inputs_expr] ... ... res[res_ind] += reduce_mult([M[i] for M, i in zip(inputs, inputs_ind)])


>>> res
array([[70., 44., 65.],
       [30., 59., 68.]]) 

这很接近np。einsum('ij,jk->ki', A, B)返回!


熟悉了爱因斯坦求和(einsum)中的虚索引(公共索引或重复索引)和沿虚索引求和,输出->整形就很容易了。因此,重点关注:

虚索引,np中的公共索引j。Einsum ("ij,jk->ki", a, b) 沿虚指标j求和

哑指标

对于einsum("…",a, b),无论是否有公共索引,在矩阵a和b之间总是发生逐元素乘法。我们可以有einsum('xy,wz', a, b)它在下标'xy,wz'中没有公共下标。

如果有一个共同的指标,如“ij,jk->ki”中的j,那么它在爱因斯坦求和中被称为哑指标。

爱因斯坦总结

被求和的索引是求和索引,在这里是i。它也被称为虚拟索引,因为任何符号都可以替换“i”而不改变表达式的含义,只要它不与同一项中的索引符号冲突。

沿虚指标求和

np。图中绿色矩形的Einsum ("ij,j", a, b),j为虚拟索引。逐元素的乘法a[i][j] * b[j]沿j轴求和为Σ (a[i][j] * b[j])。

它是np的点积。对于每个i, inner(a[i], b)是特定的np.inner()而避免np。因为它不是严格意义上的点积运算。

爱因斯坦求和惯例:简介

虚拟索引可以出现在任何地方,只要规则满足(详情请参阅youtube)。

对于np中的虚索引i。Einsum (" ik,il", a, b),它是矩阵a和b的行索引,因此提取a的列和b的列来生成点积。

输出形式

由于求和是沿着假指标进行的,所以假指标在结果矩阵中消失,因此i从“ik,il”中去掉,形成形状(k,l)。我们可以告诉np.einsum(“…-> <shape>")通过带有->标识符的输出下标标签指定输出表单。

参见numpy中的显式模式。详情请参阅Einsum。

In explicit mode the output can be directly controlled by specifying output subscript labels. This requires the identifier ‘->’ as well as the list of output subscript labels. This feature increases the flexibility of the function since summing can be disabled or forced when required. The call np.einsum('i->', a) is like np.sum(a, axis=-1), and np.einsum('ii->i', a) is like np.diag(a). The difference is that einsum does not allow broadcasting by default. Additionally np.einsum('ij,jh->ih', a, b) directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example above in implicit mode.

没有虚索引

一个在einsum中没有虚索引的例子。

一个术语(下标索引,例如:"ij")选择每个数组中的一个元素。 左边的每个元素都应用到右边的元素上,用于按元素进行乘法(因此总是会发生乘法)。

A具有形状(2,3),其中每个元素都应用于形状(2,2)的b。因此,它创建了一个形状为(2,3,2,2)而没有求和的矩阵,因为(i,j), (k.l)都是自由指标。

# --------------------------------------------------------------------------------
# For np.einsum("ij,kl", a, b)
# 1-1: Term "ij" or (i,j), two free indices, selects selects an element a[i][j].
# 1-2: Term "kl" or (k,l), two free indices, selects selects an element b[k][l].
# 2:   Each a[i][j] is applied on b[k][l] for element-wise multiplication a[i][j] * b[k,l]
# --------------------------------------------------------------------------------
# for (i,j) in a:
#    for(k,l) in b:
#        a[i][j] * b[k][l]
np.einsum("ij,kl", a, b)

array([[[[ 0,  0],
         [ 0,  0]],

        [[10, 11],
         [12, 13]],

        [[20, 22],
         [24, 26]]],


       [[[30, 33],
         [36, 39]],

        [[40, 44],
         [48, 52]],

        [[50, 55],
         [60, 65]]]])

例子

矩阵A行和矩阵B列的点积

A = np.matrix('0 1 2; 3 4 5')
B = np.matrix('0 -3; -1 -4; -2 -5');
np.einsum('ij,ji->i', A, B)

# Same with
np.diagonal(np.matmul(A,B))
(A*B).diagonal()
---
[ -5 -50]
[ -5 -50]
[[ -5 -50]]