我有一个非常大的4GB文件,当我试图读取它时,我的电脑挂了。 所以我想一块一块地读取它,在处理每一块之后,将处理过的一块存储到另一个文件中,然后读取下一块。
有什么方法可以生产这些碎片吗?
我喜欢有一个懒惰的方法。
我有一个非常大的4GB文件,当我试图读取它时,我的电脑挂了。 所以我想一块一块地读取它,在处理每一块之后,将处理过的一块存储到另一个文件中,然后读取下一块。
有什么方法可以生产这些碎片吗?
我喜欢有一个懒惰的方法。
当前回答
您可以使用以下代码。
file_obj = open('big_file')
Open()返回一个文件对象
然后使用os。获取大小的数据
file_size = os.stat('big_file').st_size
for i in range( file_size/1024):
print file_obj.read(1024)
其他回答
如果您的计算机、操作系统和python是64位的,那么您可以使用mmap模块将文件的内容映射到内存中,并使用索引和切片访问它。下面是文档中的一个例子:
import mmap
with open("hello.txt", "r+") as f:
# memory-map the file, size 0 means whole file
map = mmap.mmap(f.fileno(), 0)
# read content via standard file methods
print map.readline() # prints "Hello Python!"
# read content via slice notation
print map[:5] # prints "Hello"
# update content using slice notation;
# note that new content must have same size
map[6:] = " world!\n"
# ... and read again using standard file methods
map.seek(0)
print map.readline() # prints "Hello world!"
# close the map
map.close()
如果你的计算机、操作系统或python是32位的,那么映射大文件会占用你的大部分地址空间,并耗尽程序的内存。
您可以使用以下代码。
file_obj = open('big_file')
Open()返回一个文件对象
然后使用os。获取大小的数据
file_size = os.stat('big_file').st_size
for i in range( file_size/1024):
print file_obj.read(1024)
要编写惰性函数,只需使用yield:
def read_in_chunks(file_object, chunk_size=1024):
"""Lazy function (generator) to read a file piece by piece.
Default chunk size: 1k."""
while True:
data = file_object.read(chunk_size)
if not data:
break
yield data
with open('really_big_file.dat') as f:
for piece in read_in_chunks(f):
process_data(piece)
另一种选择是使用iter和helper函数:
f = open('really_big_file.dat')
def read1k():
return f.read(1024)
for piece in iter(read1k, ''):
process_data(piece)
如果文件是基于行的,那么文件对象已经是一个惰性的行生成器:
for line in open('really_big_file.dat'):
process_data(line)
参考python的官方文档https://docs.python.org/3/library/functions.html#iter
也许这个方法更python化:
"""A file object returned by open() is a iterator with
read method which could specify current read's block size
"""
with open('mydata.db', 'r') as f_in:
block_read = partial(f_in.read, 1024 * 1024)
block_iterator = iter(block_read, '')
for index, block in enumerate(block_iterator, start=1):
block = process_block(block) # process your block data
with open(f'{index}.txt', 'w') as f_out:
f_out.write(block)
我也有类似的情况。不清楚你是否知道以字节为单位的块大小;我通常不这样做,但所需要的记录(行)的数量是已知的:
def get_line():
with open('4gb_file') as file:
for i in file:
yield i
lines_required = 100
gen = get_line()
chunk = [i for i, j in zip(gen, range(lines_required))]
更新:谢谢nosklo。这就是我的意思。它几乎工作,除了它丢失了一行“之间”块。
chunk = [next(gen) for i in range(lines_required)]
做的把戏w/o失去任何线条,但它看起来不太好。