在闭包外部调用函数时出现奇怪的行为:

当函数在一个对象中时,一切都在工作 当函数在类中,get:

任务不可序列化:java.io.NotSerializableException:测试

问题是我需要在类而不是对象中编写代码。知道为什么会这样吗?Scala对象是否序列化(默认?)?

这是一个工作代码示例:

object working extends App {
    val list = List(1,2,3)

    val rddList = Spark.ctx.parallelize(list)
    //calling function outside closure 
    val after = rddList.map(someFunc(_))

    def someFunc(a:Int)  = a+1

    after.collect().map(println(_))
}

这是一个无效的例子:

object NOTworking extends App {
  new testing().doIT
}

//adding extends Serializable wont help
class testing {  
  val list = List(1,2,3)  
  val rddList = Spark.ctx.parallelize(list)

  def doIT =  {
    //again calling the fucntion someFunc 
    val after = rddList.map(someFunc(_))
    //this will crash (spark lazy)
    after.collect().map(println(_))
  }

  def someFunc(a:Int) = a+1
}

当前回答

我也遇到过类似的问题,从Grega的回答中我理解到

object NOTworking extends App {
 new testing().doIT
}
//adding extends Serializable wont help
class testing {

val list = List(1,2,3)

val rddList = Spark.ctx.parallelize(list)

def doIT =  {
  //again calling the fucntion someFunc 
  val after = rddList.map(someFunc(_))
  //this will crash (spark lazy)
  after.collect().map(println(_))
}

def someFunc(a:Int) = a+1

}

你的doIT方法试图序列化someFunc(_)方法,但由于方法是不可序列化的,它试图序列化类测试,这也是不可序列化的。

为了让你的代码工作,你应该在doIT方法中定义someFunc。例如:

def doIT =  {
 def someFunc(a:Int) = a+1
  //function definition
 }
 val after = rddList.map(someFunc(_))
 after.collect().map(println(_))
}

如果有多个函数进入图中,那么所有这些函数都应该对父上下文可用。

其他回答

我不完全确定这适用于Scala,但在Java中,我通过重构我的代码解决了NotSerializableException,这样闭包就不会访问不可序列化的final字段。

Scala类中定义的方法是不可序列化的,方法可以转换为函数来解决序列化问题。

方法的语法

def func_name (x String) : String = {
...
return x
}

函数的语法

val func_name = { (x String) => 
...
x
}

我也有过类似的经历。

当我在驱动程序(master)上初始化一个变量时触发了错误,但随后试图在其中一个工人上使用它。 当这种情况发生时,Spark Streaming将尝试序列化对象以将其发送给worker,如果对象不可序列化则失败。

我通过使变量为静态来解决这个错误。

以前的无效代码

  private final PhoneNumberUtil phoneUtil = PhoneNumberUtil.getInstance();

工作代码

  private static final PhoneNumberUtil phoneUtil = PhoneNumberUtil.getInstance();

学分:

https://learn.microsoft.com/en-us/answers/questions/35812/sparkexception-job-aborted-due-to-stage-failure-ta.html (pradeepcheekatla-msft的答案) https://databricks.gitbooks.io/databricks-spark-knowledge-base/content/troubleshooting/javaionotserializableexception.html

我用另一种方法解决了这个问题。您只需要在传递闭包之前序列化对象,然后反序列化。即使您的类不是Serializable,这种方法也很有效,因为它在幕后使用了Kryo。你只需要一些咖喱。;)

下面是我的一个例子:

def genMapper(kryoWrapper: KryoSerializationWrapper[(Foo => Bar)])
               (foo: Foo) : Bar = {
    kryoWrapper.value.apply(foo)
}
val mapper = genMapper(KryoSerializationWrapper(new Blah(abc))) _
rdd.flatMap(mapper).collectAsMap()

object Blah(abc: ABC) extends (Foo => Bar) {
    def apply(foo: Foo) : Bar = { //This is the real function }
}

你可以随心所欲地让Blah变得复杂,比如类、伴生对象、嵌套类、对多个第三方库的引用。

KryoSerializationWrapper是指:https://github.com/amplab/shark/blob/master/src/main/scala/shark/execution/serialization/KryoSerializationWrapper.scala

def upper(name: String) : String = { 
var uppper : String  =  name.toUpperCase()
uppper
}

val toUpperName = udf {(EmpName: String) => upper(EmpName)}
val emp_details = """[{"id": "1","name": "James Butt","country": "USA"},
{"id": "2", "name": "Josephine Darakjy","country": "USA"},
{"id": "3", "name": "Art Venere","country": "USA"},
{"id": "4", "name": "Lenna Paprocki","country": "USA"},
{"id": "5", "name": "Donette Foller","country": "USA"},
{"id": "6", "name": "Leota Dilliard","country": "USA"}]"""

val df_emp = spark.read.json(Seq(emp_details).toDS())
val df_name=df_emp.select($"id",$"name")
val df_upperName= df_name.withColumn("name",toUpperName($"name")).filter("id='5'")
display(df_upperName)

这会产生错误 sparkexception:任务不可序列化 org.apache.spark.util.ClosureCleaner .ensureSerializable美元(ClosureCleaner.scala: 304)

解决方案-

import java.io.Serializable;

object obj_upper extends Serializable { 
  def upper(name: String) : String = 
  {
    var uppper : String  =  name.toUpperCase()
    uppper
  }
val toUpperName = udf {(EmpName: String) => upper(EmpName)}
}

val df_upperName= 
df_name.withColumn("name",obj_upper.toUpperName($"name")).filter("id='5'")
display(df_upperName)