我有一个在列a中具有重复值的数据帧,我想删除重复项,保持列B中值最高的行。
所以这个:
A B
1 10
1 20
2 30
2 40
3 10
应该变成这样:
A B
1 20
2 40
3 10
我猜可能有一种简单的方法可以做到这一点——可能就像在删除重复数据之前对DataFrame进行排序一样简单——但是我不太了解groupby的内部逻辑,无法弄清楚它。有什么建议吗?
我有一个在列a中具有重复值的数据帧,我想删除重复项,保持列B中值最高的行。
所以这个:
A B
1 10
1 20
2 30
2 40
3 10
应该变成这样:
A B
1 20
2 40
3 10
我猜可能有一种简单的方法可以做到这一点——可能就像在删除重复数据之前对DataFrame进行排序一样简单——但是我不太了解groupby的内部逻辑,无法弄清楚它。有什么建议吗?
当前回答
你也可以试试这个
df.drop_duplicates(subset='A', keep='last')
我参考了https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop_duplicates.html
其他回答
这是最后一个。但不是最大值:
In [10]: df.drop_duplicates(subset='A', keep="last")
Out[10]:
A B
1 1 20
3 2 40
4 3 10
你还可以这样做:
In [12]: df.groupby('A', group_keys=False).apply(lambda x: x.loc[x.B.idxmax()])
Out[12]:
A B
A
1 1 20
2 2 40
3 3 10
试试这个:
df.groupby(['A']).max()
这是我必须解决的一个值得分享的变化:对于列a中的每个唯一字符串,我想找到列b中最常见的关联字符串。
df.groupby(“一列圆柱”)。gg ({columnB:λx: x.mode () .any ()}) .reset_index ()
any()会在模式相同的情况下选择一个。(注意,对int类型的Series使用.any()将返回一个布尔值,而不是从中选择一个。)
对于原问题,相应的方法简化为
df.groupby(一列圆柱).columnB.agg (max) .reset_index()。
你也可以试试这个
df.drop_duplicates(subset='A', keep='last')
我参考了https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop_duplicates.html
这也是可行的:
a=pd.DataFrame({'A':a.groupby('A')['B'].max().index,'B':a.groupby('A') ['B'].max().values})