我试图使用Python提取包含在这个PDF文件中的文本。

我正在使用PyPDF2包(版本1.27.2),并有以下脚本:

import PyPDF2

with open("sample.pdf", "rb") as pdf_file:
    read_pdf = PyPDF2.PdfFileReader(pdf_file)
    number_of_pages = read_pdf.getNumPages()
    page = read_pdf.pages[0]
    page_content = page.extractText()
print(page_content)

当我运行代码时,我得到以下输出,这与PDF文档中包含的输出不同:

 ! " # $ % # $ % &% $ &' ( ) * % + , - % . / 0 1 ' * 2 3% 4
5
 ' % 1 $ # 2 6 % 3/ % 7 / ) ) / 8 % &) / 2 6 % 8 # 3" % 3" * % 31 3/ 9 # &)
%

如何提取PDF文档中的文本?


当前回答

目的:从PDF中提取文本

所需工具:

Poppler for windows: windows中pdftotext文件的包装器 对于anaanaconda: conda install -c conda-forge pdftotext实用程序转换PDF到文本。

步骤: 安装荡漾。windows操作系统:在env路径下增加“xxx/bin/” PIP安装pdftotext

import pdftotext
 
# Load your PDF
with open("Target.pdf", "rb") as f:
    pdf = pdftotext.PDF(f)
 
# Save all text to a txt file.
with open('output.txt', 'w') as f:
    f.write("\n\n".join(pdf))

其他回答

如果想要从表格中提取文本,我发现tabula很容易实现,准确且快速:

获取熊猫数据框架:

import tabula

df = tabula.read_pdf('your.pdf')

df

默认情况下,它忽略表之外的页面内容。到目前为止,我只在单页、单表文件上进行了测试,但是有一些kwarg可以容纳多页和/或多表。

安装通过:

pip install tabula-py
# or
conda install -c conda-forge tabula-py 

在直接的文本提取方面,请参阅: https://stackoverflow.com/a/63190886/9249533

使用pdfminer.six。这里是文档:https://pdfminersix.readthedocs.io/en/latest/index.html

将pdf转换为文本:

    def pdf_to_text():
        from pdfminer.high_level import extract_text

        text = extract_text('test.pdf')
        print(text)

下面的代码是Python 3中该问题的解决方案。在运行代码之前,请确保已在您的环境中安装了PyPDF2库。如果未安装,打开命令提示符,执行以下命令:

pip3 install PyPDF2

使用PyPDF2 <= 1.26.0的解决方案代码:

import PyPDF2
pdfFileObject = open('sample.pdf', 'rb')
pdfReader = PyPDF2.PdfFileReader(pdfFileObject)
count = pdfReader.numPages
for i in range(count):
    page = pdfReader.getPage(i)
    print(page.extractText())

您可能希望使用经过时间验证的xPDF和派生工具来提取文本,因为pyPDF2在文本提取方面似乎仍然存在各种问题。

长的答案是,文本如何在PDF中编码有很多变化,它可能需要解码PDF字符串本身,然后可能需要与CMAP映射,然后可能需要分析单词和字母之间的距离等。

如果PDF被损坏(即显示正确的文本,但复制时产生垃圾),并且您确实需要提取文本,那么您可能需要考虑将PDF转换为图像(使用ImageMagik),然后使用Tesseract使用OCR从图像中获取文本。

Camelot似乎是在Python中从pdf中提取表的一个相当强大的解决方案。

乍一看,它似乎实现了几乎和CreekGeek建议的tabura -py包一样准确的提取,CreekGeek在可靠性方面已经超过了任何其他发布的解决方案,但它应该是更可配置的。此外,它有自己的精度指示器(results.parsing_report),以及强大的调试功能。

Camelot和Tabula都将结果作为Pandas的dataframe提供,因此之后很容易调整表。

pip install camelot-py

(不要与卡梅洛特的包装混淆。)

import camelot

df_list = []
results = camelot.read_pdf("file.pdf", ...)
for table in results:
    print(table.parsing_report)
    df_list.append(results[0].df)

它还可以输出结果为CSV, JSON, HTML或Excel。

卡梅洛特的到来是以牺牲许多属地为代价的。

NB :由于我的输入非常复杂,有许多不同的表,我最终使用Camelot和Tabula,根据表,以达到最好的结果。