我想停止各种消息都是在火花壳。

我尝试编辑log4j。属性文件,以停止这些消息。

下面是log4j.properties的内容

# Define the root logger with appender file
log4j.rootCategory=WARN, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

但是消息仍然显示在控制台上。

下面是一些示例消息

15/01/05 15:11:45 INFO SparkEnv: Registering BlockManagerMaster
15/01/05 15:11:45 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20150105151145-b1ba
15/01/05 15:11:45 INFO MemoryStore: MemoryStore started with capacity 0.0 B.
15/01/05 15:11:45 INFO ConnectionManager: Bound socket to port 44728 with id = ConnectionManagerId(192.168.100.85,44728)
15/01/05 15:11:45 INFO BlockManagerMaster: Trying to register BlockManager
15/01/05 15:11:45 INFO BlockManagerMasterActor$BlockManagerInfo: Registering block manager 192.168.100.85:44728 with 0.0 B RAM
15/01/05 15:11:45 INFO BlockManagerMaster: Registered BlockManager
15/01/05 15:11:45 INFO HttpServer: Starting HTTP Server
15/01/05 15:11:45 INFO HttpBroadcast: Broadcast server star

我怎么阻止这些?


当前回答

上面的答案是正确的,但并没有完全帮助我,因为我需要额外的信息。

我刚刚设置了Spark,所以log4j文件仍然有'。并且没有被读取。我相信日志记录默认为Spark core logging conf。

所以,如果你和我一样,发现上面的答案没有帮助,那么也许你也需要删除'。从你的log4j conf文件的模板后缀,然后上面的工作完美!

http://apache-spark-user-list.1001560.n3.nabble.com/disable-log4j-for-spark-shell-td11278.html

其他回答

博士tl;

对于Spark Context,您可以使用: sc.setLogLevel (< logLevel >) 其中loglevel可以是ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE或 警告。


细节- - - - - -

在内部,setLogLevel调用org.apache.log4j.Level.toLevel(logLevel),然后使用org.apache.log4j.LogManager.getRootLogger(). setlevel (level)进行设置。

您可以使用以下方法直接将日志级别设置为OFF: LogManager.getLogger(“org”).setLevel (Level.OFF)

您可以在conf/log4j.properties中设置Spark shell的默认日志记录。使用conf / log4j . properties。模板作为起点。

在Spark应用程序中设置日志级别

在独立的Spark应用程序中或在Spark Shell会话中,使用以下命令:

import org.apache.log4j.{Level, Logger}

Logger.getLogger(classOf[RackResolver]).getLevel
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)

禁用日志记录(在log4j中):

在conf/log4j中使用以下命令。属性完全禁用日志记录:

log4j.logger.org=OFF

参考:Jacek Laskowski的Mastering Spark。

将以下内容添加到PySpark中为我完成了工作:

self.spark.sparkContext.setLogLevel("ERROR")

自我。Spark是Spark会话(self。spark = spark_builder.getOrCreate())

一个有趣的想法是使用此处建议的RollingAppender: http://shzhangji.com/blog/2015/05/31/spark-streaming-logging-configuration/ 这样您就不会“污染”控制台空间,但仍然能够在$YOUR_LOG_PATH_HERE/${dm.logging.name}.log下看到结果。

    log4j.rootLogger=INFO, rolling

log4j.appender.rolling=org.apache.log4j.RollingFileAppender
log4j.appender.rolling.layout=org.apache.log4j.PatternLayout
log4j.appender.rolling.layout.conversionPattern=[%d] %p %m (%c)%n
log4j.appender.rolling.maxFileSize=50MB
log4j.appender.rolling.maxBackupIndex=5
log4j.appender.rolling.file=$YOUR_LOG_PATH_HERE/${dm.logging.name}.log
log4j.appender.rolling.encoding=UTF-8

另一个解决原因的方法是观察你通常有什么样的日志记录(来自不同的模块和依赖),并为每个日志设置粒度,同时将过于冗长的第三方日志“安静”:

例如,

    # Silence akka remoting
log4j.logger.Remoting=ERROR
log4j.logger.akka.event.slf4j=ERROR
log4j.logger.org.spark-project.jetty.server=ERROR
log4j.logger.org.apache.spark=ERROR
log4j.logger.com.anjuke.dm=${dm.logging.level}
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

编辑conf/log4j。属性文件,并更改以下行:

log4j.rootCategory=INFO, console

to

log4j.rootCategory=ERROR, console

另一种方法是:

启动spark-shell并输入以下内容:

import org.apache.log4j.Logger
import org.apache.log4j.Level

Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)

之后你就看不到任何日志了。

Level的其他选项包括:all、debug、error、fatal、info、off、trace、trace_int、warn

详细信息可以在文档中找到。

启动后立即火花弹型;

sc.setLogLevel("ERROR")

你可以把它放在预加载文件中,像这样使用:

spark-shell ... -I preload-file ...

在Spark 2.0 (Scala)中:

spark = SparkSession.builder.getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

你的码头:HTTP:// spark.ap.org。

对于Java:

spark = SparkSession.builder.getOrCreate();
spark.sparkContext().setLogLevel("ERROR");