如何检索队列中尚未处理的任务列表?


当前回答

如果你正在使用rabbitMQ,在终端中使用这个:

sudo rabbitmqctl list_queues

它将打印带有挂起任务数量的队列列表。例如:

Listing queues ...
0b27d8c59fba4974893ec22d478a7093    0
0e0a2da9828a48bc86fe993b210d984f    0
10@torob2.celery.pidbox 0
11926b79e30a4f0a9d95df61b6f402f7    0
15c036ad25884b82839495fb29bd6395    1
celerey_mail_worker@torob2.celery.pidbox    0
celery  166
celeryev.795ec5bb-a919-46a8-80c6-5d91d2fcf2aa   0
celeryev.faa4da32-a225-4f6c-be3b-d8814856d1b6   0

右边列的数字是队列中的任务数。在上面,芹菜队列有166个待处理的任务。

其他回答

EDIT:查看获取队列中任务列表的其他答案。

你应该看这里: 芹菜指南-检查工人

基本上是这样的:

my_app = Celery(...)

# Inspect all nodes.
i = my_app.control.inspect()

# Show the items that have an ETA or are scheduled for later processing
i.scheduled()

# Show tasks that are currently active.
i.active()

# Show tasks that have been claimed by workers
i.reserved()

这取决于你想要什么

Redis json序列化的复制粘贴解决方案:

def get_celery_queue_items(queue_name):
    import base64
    import json  

    # Get a configured instance of a celery app:
    from yourproject.celery import app as celery_app

    with celery_app.pool.acquire(block=True) as conn:
        tasks = conn.default_channel.client.lrange(queue_name, 0, -1)
        decoded_tasks = []

    for task in tasks:
        j = json.loads(task)
        body = json.loads(base64.b64decode(j['body']))
        decoded_tasks.append(body)

    return decoded_tasks

它与Django一起工作。只是别忘了改变你的项目。

我认为获取正在等待的任务的唯一方法是保留一个已启动任务的列表,并让任务在启动时将自己从列表中删除。

通过rabbitmqctl和list_queues,你可以了解有多少任务正在等待,而不是任务本身:http://www.rabbitmq.com/man/rabbitmqctl.1.man.html

如果你想要的包括正在处理的任务,但还没有完成,你可以保留一个任务列表,并检查它们的状态:

from tasks import add
result = add.delay(4, 4)

result.ready() # True if finished

或者让芹菜使用CELERY_RESULT_BACKEND存储结果,并检查哪些任务不在其中。

如果你不使用优先级任务,这其实很简单,如果你使用的是Redis。获取任务计数:

redis-cli -h HOST -p PORT -n DATABASE_NUMBER llen QUEUE_NAME

但是,优先级任务在redis中使用不同的键,所以整体情况稍微复杂一些。总的来说,您需要为任务的每个优先级查询redis。在python中(以及在Flower项目中),它看起来像:

PRIORITY_SEP = '\x06\x16'
DEFAULT_PRIORITY_STEPS = [0, 3, 6, 9]


def make_queue_name_for_pri(queue, pri):
    """Make a queue name for redis

    Celery uses PRIORITY_SEP to separate different priorities of tasks into
    different queues in Redis. Each queue-priority combination becomes a key in
    redis with names like:

     - batch1\x06\x163 <-- P3 queue named batch1

    There's more information about this in Github, but it doesn't look like it 
    will change any time soon:

      - https://github.com/celery/kombu/issues/422

    In that ticket the code below, from the Flower project, is referenced:

      - https://github.com/mher/flower/blob/master/flower/utils/broker.py#L135

    :param queue: The name of the queue to make a name for.
    :param pri: The priority to make a name with.
    :return: A name for the queue-priority pair.
    """
    if pri not in DEFAULT_PRIORITY_STEPS:
        raise ValueError('Priority not in priority steps')
    return '{0}{1}{2}'.format(*((queue, PRIORITY_SEP, pri) if pri else
                                (queue, '', '')))


def get_queue_length(queue_name='celery'):
    """Get the number of tasks in a celery queue.

    :param queue_name: The name of the queue you want to inspect.
    :return: the number of items in the queue.
    """
    priority_names = [make_queue_name_for_pri(queue_name, pri) for pri in
                      DEFAULT_PRIORITY_STEPS]
    r = redis.StrictRedis(
        host=settings.REDIS_HOST,
        port=settings.REDIS_PORT,
        db=settings.REDIS_DATABASES['CELERY'],
    )
    return sum([r.llen(x) for x in priority_names])

如果你想要获得一个实际的任务,你可以使用以下方法:

redis-cli -h HOST -p PORT -n DATABASE_NUMBER lrange QUEUE_NAME 0 -1

从那里,您必须反序列化返回的列表。以我为例,我可以通过以下方法来实现:

r = redis.StrictRedis(
    host=settings.REDIS_HOST,
    port=settings.REDIS_PORT,
    db=settings.REDIS_DATABASES['CELERY'],
)
l = r.lrange('celery', 0, -1)
pickle.loads(base64.decodestring(json.loads(l[0])['body']))

请注意,反序列化可能需要一些时间,您需要调整上面的命令以处理不同的优先级。

如果您控制任务的代码,那么您可以通过让任务在第一次执行时触发一个微不足道的重试来解决这个问题,然后检查inspect().reserved()。重试将任务注册到结果后端,芹菜可以看到这一点。任务必须接受self或context作为第一个参数,这样我们才能访问重试计数。

@task(bind=True)
def mytask(self):
    if self.request.retries == 0:
        raise self.retry(exc=MyTrivialError(), countdown=1)
    ...

这个解决方案与代理无关。你不必担心你是用RabbitMQ还是Redis来存储任务。

编辑:经过测试,我发现这只是一个部分的解决方案。预留的大小受限于worker的预取设置。