我有一组数据,我想比较哪条线最能描述它(不同阶的多项式,指数或对数)。
我使用Python和Numpy和多项式拟合有一个函数polyfit()。但我没有发现这样的函数的指数和对数拟合。
有吗?或者如何解决这个问题?
我有一组数据,我想比较哪条线最能描述它(不同阶的多项式,指数或对数)。
我使用Python和Numpy和多项式拟合有一个函数polyfit()。但我没有发现这样的函数的指数和对数拟合。
有吗?或者如何解决这个问题?
当前回答
要拟合y = A + B log x,只需将y与(log x)拟合。
>>> x = numpy.array([1, 7, 20, 50, 79])
>>> y = numpy.array([10, 19, 30, 35, 51])
>>> numpy.polyfit(numpy.log(x), y, 1)
array([ 8.46295607, 6.61867463])
# y ≈ 8.46 log(x) + 6.62
为了拟合y = AeBx,两边取对数得到log y = log A + Bx。把log y和x匹配起来。
请注意,拟合(log y)如果是线性的,将强调y的小值,导致大y的大偏差。这是因为polyfit(线性回归)通过最小化∑i (ΔY)2 =∑i (Yi−Ŷi)2来工作。当Yi = log Yi时,余数ΔYi = Δ(log Yi)≈Δyi / | Yi |。因此,即使多拟合对大y做出了非常糟糕的决定,“除以-|y|”因素也会补偿它,导致多拟合倾向于小值。
这可以通过给每个条目一个与y成比例的“权重”来缓解。polyfit通过w关键字参数支持加权最小二乘。
>>> x = numpy.array([10, 19, 30, 35, 51])
>>> y = numpy.array([1, 7, 20, 50, 79])
>>> numpy.polyfit(x, numpy.log(y), 1)
array([ 0.10502711, -0.40116352])
# y ≈ exp(-0.401) * exp(0.105 * x) = 0.670 * exp(0.105 * x)
# (^ biased towards small values)
>>> numpy.polyfit(x, numpy.log(y), 1, w=numpy.sqrt(y))
array([ 0.06009446, 1.41648096])
# y ≈ exp(1.42) * exp(0.0601 * x) = 4.12 * exp(0.0601 * x)
# (^ not so biased)
请注意,Excel、LibreOffice和大多数科学计算器通常使用未加权(有偏差)公式来计算指数回归/趋势线。如果您希望您的结果与这些平台兼容,即使它提供了更好的结果,也不要包含权重。
如果你可以使用scipy,你可以使用scipy。optimize。Curve_fit适合任何不需要转换的模型。
对于y = A + B log x,结果与变换方法相同:
>>> x = numpy.array([1, 7, 20, 50, 79])
>>> y = numpy.array([10, 19, 30, 35, 51])
>>> scipy.optimize.curve_fit(lambda t,a,b: a+b*numpy.log(t), x, y)
(array([ 6.61867467, 8.46295606]),
array([[ 28.15948002, -7.89609542],
[ -7.89609542, 2.9857172 ]]))
# y ≈ 6.62 + 8.46 log(x)
然而,对于y = AeBx,我们可以得到一个更好的拟合,因为它直接计算Δ(log y)。但是我们需要提供一个初始化的猜测,以便curve_fit能够达到所需的局部最小值。
>>> x = numpy.array([10, 19, 30, 35, 51])
>>> y = numpy.array([1, 7, 20, 50, 79])
>>> scipy.optimize.curve_fit(lambda t,a,b: a*numpy.exp(b*t), x, y)
(array([ 5.60728326e-21, 9.99993501e-01]),
array([[ 4.14809412e-27, -1.45078961e-08],
[ -1.45078961e-08, 5.07411462e+10]]))
# oops, definitely wrong.
>>> scipy.optimize.curve_fit(lambda t,a,b: a*numpy.exp(b*t), x, y, p0=(4, 0.1))
(array([ 4.88003249, 0.05531256]),
array([[ 1.01261314e+01, -4.31940132e-02],
[ -4.31940132e-02, 1.91188656e-04]]))
# y ≈ 4.88 exp(0.0553 x). much better.
其他回答
Wolfram有一个封闭形式的解拟合指数。他们也有类似的解决方案拟合对数和幂律。
我发现这比scipy的curve_fit工作得更好。特别是当你没有“接近零”的数据时。这里有一个例子:
import numpy as np
import matplotlib.pyplot as plt
# Fit the function y = A * exp(B * x) to the data
# returns (A, B)
# From: https://mathworld.wolfram.com/LeastSquaresFittingExponential.html
def fit_exp(xs, ys):
S_x2_y = 0.0
S_y_lny = 0.0
S_x_y = 0.0
S_x_y_lny = 0.0
S_y = 0.0
for (x,y) in zip(xs, ys):
S_x2_y += x * x * y
S_y_lny += y * np.log(y)
S_x_y += x * y
S_x_y_lny += x * y * np.log(y)
S_y += y
#end
a = (S_x2_y * S_y_lny - S_x_y * S_x_y_lny) / (S_y * S_x2_y - S_x_y * S_x_y)
b = (S_y * S_x_y_lny - S_x_y * S_y_lny) / (S_y * S_x2_y - S_x_y * S_x_y)
return (np.exp(a), b)
xs = [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]
ys = [3187, 3545, 4045, 4447, 4872, 5660, 5983, 6254, 6681, 7206]
(A, B) = fit_exp(xs, ys)
plt.figure()
plt.plot(xs, ys, 'o-', label='Raw Data')
plt.plot(xs, [A * np.exp(B *x) for x in xs], 'o-', label='Fit')
plt.title('Exponential Fit Test')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
我们在解决这两个问题的同时演示了lmfit的特性。
鉴于
import lmfit
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
np.random.seed(123)
# General Functions
def func_log(x, a, b, c):
"""Return values from a general log function."""
return a * np.log(b * x) + c
# Data
x_samp = np.linspace(1, 5, 50)
_noise = np.random.normal(size=len(x_samp), scale=0.06)
y_samp = 2.5 * np.exp(1.2 * x_samp) + 0.7 + _noise
y_samp2 = 2.5 * np.log(1.2 * x_samp) + 0.7 + _noise
Code
方法1 - lmfit模型
拟合指数数据
regressor = lmfit.models.ExponentialModel() # 1
initial_guess = dict(amplitude=1, decay=-1) # 2
results = regressor.fit(y_samp, x=x_samp, **initial_guess)
y_fit = results.best_fit
plt.plot(x_samp, y_samp, "o", label="Data")
plt.plot(x_samp, y_fit, "k--", label="Fit")
plt.legend()
方法2 -自定义模型
拟合日志数据
regressor = lmfit.Model(func_log) # 1
initial_guess = dict(a=1, b=.1, c=.1) # 2
results = regressor.fit(y_samp2, x=x_samp, **initial_guess)
y_fit = results.best_fit
plt.plot(x_samp, y_samp2, "o", label="Data")
plt.plot(x_samp, y_fit, "k--", label="Fit")
plt.legend()
细节
选择一个回归类 提供命名的、尊重函数域的初始猜测
您可以从回归器对象确定推断出的参数。例子:
regressor.param_names
# ['decay', 'amplitude']
要进行预测,请使用ModelResult.eval()方法。
model = results.eval
y_pred = model(x=np.array([1.5]))
注意:ExponentialModel()遵循一个衰减函数,它接受两个参数,其中一个是负的。
请参见ExponentialGaussianModel(),它接受更多参数。
通过> pip Install lmfit安装库。
下面是使用scikit learn中的工具对简单数据进行线性化的选项。
鉴于
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import FunctionTransformer
np.random.seed(123)
# General Functions
def func_exp(x, a, b, c):
"""Return values from a general exponential function."""
return a * np.exp(b * x) + c
def func_log(x, a, b, c):
"""Return values from a general log function."""
return a * np.log(b * x) + c
# Helper
def generate_data(func, *args, jitter=0):
"""Return a tuple of arrays with random data along a general function."""
xs = np.linspace(1, 5, 50)
ys = func(xs, *args)
noise = jitter * np.random.normal(size=len(xs)) + jitter
xs = xs.reshape(-1, 1) # xs[:, np.newaxis]
ys = (ys + noise).reshape(-1, 1)
return xs, ys
transformer = FunctionTransformer(np.log, validate=True)
Code
拟合指数数据
# Data
x_samp, y_samp = generate_data(func_exp, 2.5, 1.2, 0.7, jitter=3)
y_trans = transformer.fit_transform(y_samp) # 1
# Regression
regressor = LinearRegression()
results = regressor.fit(x_samp, y_trans) # 2
model = results.predict
y_fit = model(x_samp)
# Visualization
plt.scatter(x_samp, y_samp)
plt.plot(x_samp, np.exp(y_fit), "k--", label="Fit") # 3
plt.title("Exponential Fit")
拟合日志数据
# Data
x_samp, y_samp = generate_data(func_log, 2.5, 1.2, 0.7, jitter=0.15)
x_trans = transformer.fit_transform(x_samp) # 1
# Regression
regressor = LinearRegression()
results = regressor.fit(x_trans, y_samp) # 2
model = results.predict
y_fit = model(x_trans)
# Visualization
plt.scatter(x_samp, y_samp)
plt.plot(x_samp, y_fit, "k--", label="Fit") # 3
plt.title("Logarithmic Fit")
细节
一般步骤
对数据值(x、y或两者)应用日志操作 将数据回归到线性化模型 通过“反转”任何日志操作(使用np.exp())绘制并适合原始数据
假设我们的数据遵循指数趋势,一般的方程+可能是:
我们可以通过取对数来线性化后一个方程(例如y =截距+斜率* x):
给定线性化方程++和回归参数,我们可以计算出:
A经截距(ln(A)) B经斜率(B)
线性化技术概述
Relationship | Example | General Eqn. | Altered Var. | Linearized Eqn.
-------------|------------|----------------------|----------------|------------------------------------------
Linear | x | y = B * x + C | - | y = C + B * x
Logarithmic | log(x) | y = A * log(B*x) + C | log(x) | y = C + A * (log(B) + log(x))
Exponential | 2**x, e**x | y = A * exp(B*x) + C | log(y) | log(y-C) = log(A) + B * x
Power | x**2 | y = B * x**N + C | log(x), log(y) | log(y-C) = log(B) + N * log(x)
+注意:线性化指数函数在噪声较小且C=0时效果最好。请谨慎使用。
注:修改x数据有助于线性化指数数据,而修改y数据有助于线性化日志数据。
我想你可以用:
np.log --> natural log
np.log10 --> base 10
np.log2 --> base 2
稍微修改一下IanVS的答案:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(x, a, b, c):
#return a * np.exp(-b * x) + c
return a * np.log(b * x) + c
x = np.linspace(1,5,50) # changed boundary conditions to avoid division by 0
y = func(x, 2.5, 1.3, 0.5)
yn = y + 0.2*np.random.normal(size=len(x))
popt, pcov = curve_fit(func, x, yn)
plt.figure()
plt.plot(x, yn, 'ko', label="Original Noised Data")
plt.plot(x, func(x, *popt), 'r-', label="Fitted Curve")
plt.legend()
plt.show()
结果如下图所示:
我在这方面遇到了一些麻烦,所以让我非常明确,这样像我这样的新手就能理解。
假设我们有一个数据文件之类的
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import numpy as np
import sympy as sym
"""
Generate some data, let's imagine that you already have this.
"""
x = np.linspace(0, 3, 50)
y = np.exp(x)
"""
Plot your data
"""
plt.plot(x, y, 'ro',label="Original Data")
"""
brutal force to avoid errors
"""
x = np.array(x, dtype=float) #transform your data in a numpy array of floats
y = np.array(y, dtype=float) #so the curve_fit can work
"""
create a function to fit with your data. a, b, c and d are the coefficients
that curve_fit will calculate for you.
In this part you need to guess and/or use mathematical knowledge to find
a function that resembles your data
"""
def func(x, a, b, c, d):
return a*x**3 + b*x**2 +c*x + d
"""
make the curve_fit
"""
popt, pcov = curve_fit(func, x, y)
"""
The result is:
popt[0] = a , popt[1] = b, popt[2] = c and popt[3] = d of the function,
so f(x) = popt[0]*x**3 + popt[1]*x**2 + popt[2]*x + popt[3].
"""
print "a = %s , b = %s, c = %s, d = %s" % (popt[0], popt[1], popt[2], popt[3])
"""
Use sympy to generate the latex sintax of the function
"""
xs = sym.Symbol('\lambda')
tex = sym.latex(func(xs,*popt)).replace('$', '')
plt.title(r'$f(\lambda)= %s$' %(tex),fontsize=16)
"""
Print the coefficients and plot the funcion.
"""
plt.plot(x, func(x, *popt), label="Fitted Curve") #same as line above \/
#plt.plot(x, popt[0]*x**3 + popt[1]*x**2 + popt[2]*x + popt[3], label="Fitted Curve")
plt.legend(loc='upper left')
plt.show()
结果是: A = 0.849195983017, b = -1.18101681765, c = 2.24061176543, d = 0.816643894816